1. (a) if f(t)=e^-wt sin wt, show that d^2f/dt^2 +2w df/dt + 5wf=0
(b) A curve passes through the points (1, 2) and its gradient function is 3x^4-1 all over X^2. Find the equation of the curve.
(a)
"f'(t)=-we^{-wt}\\sin wt+we^{-wt}\\cos wt""f''(t)=w^2e^{-wt}\\sin wt-w^2e^{-wt}\\cos wt"
"-w^2e^{-wt}\\cos wt-w^2e^{-wt}\\sin wt"
"=-2w^2e^{-wt}\\cos wt"
"\\dfrac{d^2f}{dt^2}+2w\\dfrac{df}{dt}+5wf"
"=-2w^2e^{-wt}\\cos wt+2w(-we^{-wt}\\sin wt+we^{-wt}\\cos wt)"
"+5w(e^{-wt}\\sin wt)=-2w^2e^{-wt}\\sin wt+5we^{-wt}\\sin wt"
"=-2w^2e^{-wt}\\sin wt+5we^{-wt}\\sin wt\\not=0"
(b)
"f(1)=\\dfrac{3}{5}(1)^5-1+C=2=>C=\\dfrac{12}{5}"
"f(x)=\\dfrac{3}{5}x^5-x+\\dfrac{12}{5}"
Comments
Leave a comment