Question #212764

1. (a) if f(t)=e^-wt sin wt, show that d^2f/dt^2 +2w df/dt + 5wf=0

(b) A curve passes through the points (1, 2) and its gradient function is 3x^4-1 all over X^2. Find the equation of the curve.


1
Expert's answer
2021-07-05T09:03:49-0400

(a)

f(t)=wewtsinwt+wewtcoswtf'(t)=-we^{-wt}\sin wt+we^{-wt}\cos wt

f(t)=w2ewtsinwtw2ewtcoswtf''(t)=w^2e^{-wt}\sin wt-w^2e^{-wt}\cos wt

w2ewtcoswtw2ewtsinwt-w^2e^{-wt}\cos wt-w^2e^{-wt}\sin wt

=2w2ewtcoswt=-2w^2e^{-wt}\cos wt

d2fdt2+2wdfdt+5wf\dfrac{d^2f}{dt^2}+2w\dfrac{df}{dt}+5wf

=2w2ewtcoswt+2w(wewtsinwt+wewtcoswt)=-2w^2e^{-wt}\cos wt+2w(-we^{-wt}\sin wt+we^{-wt}\cos wt)

+5w(ewtsinwt)=2w2ewtsinwt+5wewtsinwt+5w(e^{-wt}\sin wt)=-2w^2e^{-wt}\sin wt+5we^{-wt}\sin wt

=2w2ewtsinwt+5wewtsinwt0=-2w^2e^{-wt}\sin wt+5we^{-wt}\sin wt\not=0

(b)


f(x)=(3x41)dx=35x5x+Cf(x)=\int(3x^4-1)dx=\dfrac{3}{5}x^5-x+C

f(1)=35(1)51+C=2=>C=125f(1)=\dfrac{3}{5}(1)^5-1+C=2=>C=\dfrac{12}{5}

f(x)=35x5x+125f(x)=\dfrac{3}{5}x^5-x+\dfrac{12}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS