Find the derivative of the function Y= x3 + x2 /x
a. x2/x + x/x
b. x2+ x /x
c. 2x + 1
d. 3x4 + 2x3
y=x3+x2x=u=x3+x2du/dx=3x2+2xv=xdv/dx=1dydy=Vdu/dx−Udv/dxV2y = \dfrac{x³ + x²}{x}= \\ u = x³ + x²\\ du/dx = 3x² + 2x\\ v = x \\dv/dx = 1 \\ \dfrac{dy}{dy} = \dfrac{Vdu/dx-Udv/dx}{V²}y=xx3+x2=u=x3+x2du/dx=3x2+2xv=xdv/dx=1dydy=V2Vdu/dx−Udv/dx
dydx=x(3x2+2x)−(x3+x2)(1)x2\dfrac{dy}{dx} =\dfrac{x(3x²+2x)-(x³+x²)(1)}{x²}dxdy=x2x(3x2+2x)−(x3+x2)(1)
=3x3+2x2−x3−x2x2=2x3+x2x2= \dfrac{3x³+2x²-x³-x²}{x²} =\dfrac{2x³+x²}{x²}=x23x3+2x2−x3−x2=x22x3+x2
=2x+1=2x+1=2x+1
a. y=x+1dydx=1(x0)=1a.\ \ y = x +1\\ \quad \dfrac{dy}{dx} = 1(x⁰) = 1a. y=x+1dxdy=1(x0)=1
b. y=2x+1dydx=2(x0)+0=2b.\ \ y = 2x +1\\ \quad \dfrac{dy}{dx} = 2(x⁰) +0 = 2b. y=2x+1dxdy=2(x0)+0=2
c. y=2x+1dydx=2(x0)+0=2c.\ \ y = 2x +1\\ \quad \dfrac{dy}{dx} = 2(x⁰)+ 0 = 2c. y=2x+1dxdy=2(x0)+0=2
d. y=3x4+2x3dydx=3(4x3)+6(x2)=12x3+6x2d.\ \ y = 3x⁴ +2x³\\ \quad \dfrac{dy}{dx} = 3(4x³) + 6(x²) = 12x³ + 6x²d. y=3x4+2x3dxdy=3(4x3)+6(x2)=12x3+6x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments