Question #196782

(a) Let In = \int _0^1x^n\sqrt{1-x^2\:dx}, n ∈ N. Show that (n + 2)In = (n − 1)In−2, n ≥ 2.

(b) If g = sin(sin x), prove that \frac{d^2y}{dx^2}+tan\:x\frac{dy}{dx}+ycosx^2= 0.


1
Expert's answer
2021-05-25T17:46:07-0400

(a)


In=01xn1x2dxI_n=\displaystyle\int_{0}^{1}x^n\sqrt{1-x^2}dx

xn1x2dx\int x^n\sqrt{1-x^2}dx

udv=uvvdu\int udv=uv-\int vdu

u=xn1,du=(n1)xn2dxu=x^{n-1}, du=(n-1)x^{n-2}dx

dv=x1x2dx,v=x1x2dxdv=x\sqrt{1-x^2}dx, v=\int x\sqrt{1-x^2}dx

=13(1x2)32=-\dfrac{1}{3}(1-x^2)^{{3 \over 2}}

xn1x2dx=xn1(13(1x2)32)\int x^n\sqrt{1-x^2}dx=x^{n-1}\big(-\dfrac{1}{3}(1-x^2)^{{3 \over 2}}\big)

+n13xn2(1x2)1x2dx+\dfrac{n-1}{3}\int x^{n-2}(1-x^2)\sqrt{1-x^2}dx

=xn1(13(1x2)32)+n13xn21x2dx=x^{n-1}\big(-\dfrac{1}{3}(1-x^2)^{{3 \over 2}}\big)+\dfrac{n-1}{3}\int x^{n-2}\sqrt{1-x^2}dx

n13xn1x2dx-\dfrac{n-1}{3}\int x^{n}\sqrt{1-x^2}dx

(n+2)xn1x2dx=xn1(1x2)32(n+2)\int x^n\sqrt{1-x^2}dx=x^{n-1}(1-x^2)^{{3 \over 2}}

+(n1)xn21x2dx+(n-1)\int x^{n-2}\sqrt{1-x^2}dx

(n+2)01xn1x2dx(n+2)\displaystyle\int_{0}^{1}x^n\sqrt{1-x^2}dx

=[xn1(1x2)32]10+(n1)01xn21x2dx=\big[x^{n-1}(1-x^2)^{{3 \over 2}}\big]\begin{matrix} 1 \\ 0 \end{matrix}+(n-1)\displaystyle\int_{0}^{1}x^{n-2}\sqrt{1-x^2}dx

(n+2)01xn1x2dx(n+2)\displaystyle\int_{0}^{1}x^n\sqrt{1-x^2}dx

=(00)+(n1)01xn21x2dx=(0-0)+(n-1)\displaystyle\int_{0}^{1}x^{n-2}\sqrt{1-x^2}dx

Hence


(n+2)In=(n1)In2,  n2(n+2)I_n=(n-1)I_{n-2}, \ \ n\geq2


(b)


g=sin(sinx)g=\sin(\sin x)

dgdx=cos(sinx)cosx\dfrac{dg}{dx}=\cos(\sin x)\cdot\cos x


d2gdx2=sin(sinx)cos2xcos(sinx)sinx\dfrac{d^2 g}{dx^2 }=-\sin(\sin x)\cdot\cos^2 x-\cos(\sin x)\cdot\sin x

d2gdx2+tanxdgdx+gcos2x\dfrac{d^2 g}{dx^2 }+\tan x\cdot\dfrac{d g}{dx }+g\cdot \cos^2x

=sin(sinx)cos2xcos(sinx)sinx=-\sin(\sin x)\cdot\cos^2 x-\cos(\sin x)\cdot\sin x

+tanxcos(sinx)cosx+\tan x\cdot\cos(\sin x)\cdot\cos x

+sin(sinx)cos2x+\sin(\sin x)\cdot\cos^2x

=0=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS