(a) Let In = \int _0^1x^n\sqrt{1-x^2\:dx}, n ∈ N. Show that (n + 2)In = (n − 1)In−2, n ≥ 2.
(b) If g = sin(sin x), prove that \frac{d^2y}{dx^2}+tan\:x\frac{dy}{dx}+ycosx^2= 0.
(a)
"\\int x^n\\sqrt{1-x^2}dx"
"\\int udv=uv-\\int vdu"
"u=x^{n-1}, du=(n-1)x^{n-2}dx"
"dv=x\\sqrt{1-x^2}dx, v=\\int x\\sqrt{1-x^2}dx"
"=-\\dfrac{1}{3}(1-x^2)^{{3 \\over 2}}"
"\\int x^n\\sqrt{1-x^2}dx=x^{n-1}\\big(-\\dfrac{1}{3}(1-x^2)^{{3 \\over 2}}\\big)"
"+\\dfrac{n-1}{3}\\int x^{n-2}(1-x^2)\\sqrt{1-x^2}dx"
"=x^{n-1}\\big(-\\dfrac{1}{3}(1-x^2)^{{3 \\over 2}}\\big)+\\dfrac{n-1}{3}\\int x^{n-2}\\sqrt{1-x^2}dx"
"-\\dfrac{n-1}{3}\\int x^{n}\\sqrt{1-x^2}dx"
"(n+2)\\int x^n\\sqrt{1-x^2}dx=x^{n-1}(1-x^2)^{{3 \\over 2}}"
"+(n-1)\\int x^{n-2}\\sqrt{1-x^2}dx"
"(n+2)\\displaystyle\\int_{0}^{1}x^n\\sqrt{1-x^2}dx"
"=\\big[x^{n-1}(1-x^2)^{{3 \\over 2}}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}+(n-1)\\displaystyle\\int_{0}^{1}x^{n-2}\\sqrt{1-x^2}dx"
"(n+2)\\displaystyle\\int_{0}^{1}x^n\\sqrt{1-x^2}dx"
"=(0-0)+(n-1)\\displaystyle\\int_{0}^{1}x^{n-2}\\sqrt{1-x^2}dx"
Hence
(b)
"\\dfrac{dg}{dx}=\\cos(\\sin x)\\cdot\\cos x"
"\\dfrac{d^2 g}{dx^2 }+\\tan x\\cdot\\dfrac{d g}{dx }+g\\cdot \\cos^2x"
"=-\\sin(\\sin x)\\cdot\\cos^2 x-\\cos(\\sin x)\\cdot\\sin x"
"+\\tan x\\cdot\\cos(\\sin x)\\cdot\\cos x"
"+\\sin(\\sin x)\\cdot\\cos^2x"
"=0"
Comments
Leave a comment