Question #191371

Allocated function: y = A cos kt

Values assigned: A = 4, k = 5

Graph of displacement y (metres) against time t (seconds) for time interval from t = 0s to t = 2π/k seconds.

Q: Calculate the turning points of the function using differential calculus and show for each turning point whether it is a maximum, a minimum or a point of inflexion, by using the second derivative of the function.


1
Expert's answer
2021-05-12T03:50:14-0400

y=Acos(kt)y=A\cos(kt)

but A=4 and k=5

    y=4cos(5t)\implies y=4 \cos(5t)

at turning points,first derivative is zero

    dydx=4(sin(5t)5)=20sin(5t)=0\implies {dy\over dx}=4(-\sin(5t)*5)=-20 \sin(5t)=0

    sin(5t)=0\implies \sin(5t)=0 ......................(i)

let 5t=θ    sin(θ)=05t=\theta \implies \sin(\theta)=0

from the unit circle,we have two angles whose sine is θ\theta ,that is 0 and π\pi

    θ=0+2πc=2πc\implies \theta=0+2\pi c=2\pi c

θ=π+2πc\theta=\pi +2 \pi c , where c in an interger

but θ=5t\theta=5t

θ=0+2πc=2πc    2πc=5t    t=2πc5..............(ii)\theta=0+2 \pi c=2 \pi c \implies 2 \pi c=5t \implies t={2 \pi c \over 5}..............(ii)

θ=π+2πc    π+2πc=5t    t=π5+2πc5.................(iii)\theta=\pi + 2 \pi c \implies \pi+2 \pi c=5t \implies t={\pi\over 5}+{2 \pi c\over 5}.................(iii)

we then use equation (ii) and (iii) avove to find all of the infinitely many solutions for equation (i)

we are asked to find those solutions which are in the interval [0,2π5][0 , {2 \pi\over 5}]

this means that we shall stop at t=2π5t={2 \pi\over 5}

we then substitute v arious values of c to equation (ii) and (iii) as follows

when c=0c=0

t=2π(0)5=0t={2 \pi (0)\over 5}=0 from equation (ii)

t=π5+2π(0)5=π5t={\pi\over 5}+{2 \pi (0)\over 5}={\pi\over 5} from equation (iii)

when c=1c=1

t=2π(1)5=2π5t={2 \pi (1)\over 5}={2 \pi\over 5} from equation (ii)

t=π5+2π(1)5=3π5t={\pi\over 5}+{2 \pi (1)\over 5}={3\pi\over 5} from equation (iii)

from interval [0,2π5][0 , {2 \pi\over 5}]

t=0 , t=π5t={\pi\over 5} , t=2π5t={2 \pi\over 5}

we then find y values using the following equation

y=4cos(5t)y=4 \cos(5t)

when t=0t=0

y=4cos(50)=4y=4 \cos(5*0)=4     \implies turning point (0,4)(0 , 4)

when t=π5t={\pi\over 5}

y=4cos(5π5)=4y=4 \cos(5*{\pi\over 5})=-4     \implies turning point (π5,4)({\pi\over 5} ,- 4)

when t=2π5t={2 \pi\over 5}

y=4cos(52π5)=4y=4 \cos(5*{2 \pi\over 5})=4     \implies turning point (2π5,4)({2\pi\over 5} , 4)

we use the second derivative to determine the nature of the turning points

d2ydt2=20(cos(5t)5){d^2y\over dt^2}=-20(\cos(5t)*5)

=100cos(5t)=-100\cos(5t)

when t=0t=0

d2ydt2=100cos(50)=100<0{d^2y\over dt^2}=-100\cos(5*0)=-100\lt0     (0,4)\implies (0 , 4) is a local maximum

when t=π5t={\pi\over 5}

d2ydt2=100cos(5π5=100>0{d^2y\over dt^2}=-100\cos(5*{\pi\over 5}=100\gt0     (π5,4)\implies ({\pi\over 5} , -4) is a local minimum

when t=2π5t={2 \pi\over 5}

d2ydt2=100cos(52π5)=100<0{d^2y\over dt^2}=-100\cos(5*{2\pi\over 5})=-100\lt0     (0,4)\implies (0 , 4) is a local maximum









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS