Allocated function: y = A cos kt
Values assigned: A = 4, k = 5
Graph of displacement y (metres) against time t (seconds) for time interval from t = 0s to t = 2π/k seconds.
Q: Calculate the turning points of the function using differential calculus and show for each turning point whether it is a maximum, a minimum or a point of inflexion, by using the second derivative of the function.
"y=A\\cos(kt)"
but A=4 and k=5
"\\implies y=4 \\cos(5t)"
at turning points,first derivative is zero
"\\implies {dy\\over dx}=4(-\\sin(5t)*5)=-20 \\sin(5t)=0"
"\\implies \\sin(5t)=0" ......................(i)
let "5t=\\theta \\implies \\sin(\\theta)=0"
from the unit circle,we have two angles whose sine is "\\theta" ,that is 0 and "\\pi"
"\\implies \\theta=0+2\\pi c=2\\pi c"
"\\theta=\\pi +2 \\pi c" , where c in an interger
but "\\theta=5t"
"\\theta=0+2 \\pi c=2 \\pi c \\implies 2 \\pi c=5t \\implies t={2 \\pi c \\over 5}..............(ii)"
"\\theta=\\pi + 2 \\pi c \\implies \\pi+2 \\pi c=5t \\implies t={\\pi\\over 5}+{2 \\pi c\\over 5}.................(iii)"
we then use equation (ii) and (iii) avove to find all of the infinitely many solutions for equation (i)
we are asked to find those solutions which are in the interval "[0 , {2 \\pi\\over 5}]"
this means that we shall stop at "t={2 \\pi\\over 5}"
we then substitute v arious values of c to equation (ii) and (iii) as follows
when "c=0"
"t={2 \\pi (0)\\over 5}=0" from equation (ii)
"t={\\pi\\over 5}+{2 \\pi (0)\\over 5}={\\pi\\over 5}" from equation (iii)
when "c=1"
"t={2 \\pi (1)\\over 5}={2 \\pi\\over 5}" from equation (ii)
"t={\\pi\\over 5}+{2 \\pi (1)\\over 5}={3\\pi\\over 5}" from equation (iii)
from interval "[0 , {2 \\pi\\over 5}]"
t=0 , "t={\\pi\\over 5}" , "t={2 \\pi\\over 5}"
we then find y values using the following equation
"y=4 \\cos(5t)"
when "t=0"
"y=4 \\cos(5*0)=4" "\\implies" turning point "(0 , 4)"
when "t={\\pi\\over 5}"
"y=4 \\cos(5*{\\pi\\over 5})=-4" "\\implies" turning point "({\\pi\\over 5} ,- 4)"
when "t={2 \\pi\\over 5}"
"y=4 \\cos(5*{2 \\pi\\over 5})=4" "\\implies" turning point "({2\\pi\\over 5} , 4)"
we use the second derivative to determine the nature of the turning points
"{d^2y\\over dt^2}=-20(\\cos(5t)*5)"
"=-100\\cos(5t)"
when "t=0"
"{d^2y\\over dt^2}=-100\\cos(5*0)=-100\\lt0" "\\implies (0 , 4)" is a local maximum
when "t={\\pi\\over 5}"
"{d^2y\\over dt^2}=-100\\cos(5*{\\pi\\over 5}=100\\gt0" "\\implies ({\\pi\\over 5} , -4)" is a local minimum
when "t={2 \\pi\\over 5}"
"{d^2y\\over dt^2}=-100\\cos(5*{2\\pi\\over 5})=-100\\lt0" "\\implies (0 , 4)" is a local maximum
Comments
Leave a comment