A drug response curve describes the level of medication in the bloodstream after a drug is administered. A surge function, given below, is often used to model the response curve, reflecting an initial surge in the drug level and then a more gradual decline. If, for a particular drug, A = 0.02, p = 3, k = 3, and t is measured in minutes, estimate the times, t corresponding to the inflection points. (Round the answers to three decimal places.)
S(t) = At^p e^-kt
t > 0
1
Expert's answer
2011-03-10T06:23:19-0500
Let's find the inflection points of the function. The the second derivative : d2S/dt2 = d/dt (dS/dt) = d/dt [e-kt (Aptp-1 - kAtp)] = -ke-kt (Aptp-1 - kAtp) + e-kt (Ap(p-1)tp-2 - kpAtp-1)] =
= e-kt [k2Atp -2 kpAtp-1 + Ap(p-1)tp-2]
For A = 0.02, p = 3, k = 3: d2S/dt2 = e-3t [0.18t3 -0.36At2 + 0.12t] . The zeros of this second derivative are the inflection points: e-3t [0.18t3 -0.36At2 + 0.12t] = 0.
e-3t t(3t2 - 6t + 2) = 0.
t1 = 0 3t2 - 6t + 2 = 0;
D = 9-6=3
t2 = (3 - √3)/3 = 1 - 1/√3 = 0.423; t3 = (3 + √3)/3 = 1 + 1/√3 = 1.577; Thus the points of inflection are 0, 0.423, 1.577
Dear Cara. The first derivative with the given particular parameters
A=0.02, p=k=3 is
3*0.02t[sup]2[/sup]*e[sup]-3t[/sup]-0.06t[sup]3[/sup]e[sup]-3t[/sup]=(0.06t[sup]2[/sup]-0.06t[sup]3[/sup])e[sup]-3t[/sup]
Cara
14.10.14, 06:46
How did you take the first derivative of the surge function? I'm not
quite sure how to take the derivative of the function because it has
three variables and my derivative isn't coming out the same as yours
for the first or second derivative.
Assignment Expert
10.10.14, 18:33
Dear Emma. An inflection point on the graph of a function y=f(x) is
defined as a point at which the graph passes from one side of its
tangent line to another. At an inflection point, the graph changes the
direction of its convexity. If the second derivative at some x0 is
equal to zero and second derivative changes sign as x passes through
x0, then (x0, f(x0)) is an inflection point.
Emma
08.10.14, 15:56
What is the significance of the points of inflection?
Leave a comment
Thank you! Your comments have been successfully added. However, they need to be checked by the moderator before being published.
Comments
Dear Cara. The first derivative with the given particular parameters A=0.02, p=k=3 is 3*0.02t[sup]2[/sup]*e[sup]-3t[/sup]-0.06t[sup]3[/sup]e[sup]-3t[/sup]=(0.06t[sup]2[/sup]-0.06t[sup]3[/sup])e[sup]-3t[/sup]
How did you take the first derivative of the surge function? I'm not quite sure how to take the derivative of the function because it has three variables and my derivative isn't coming out the same as yours for the first or second derivative.
Dear Emma. An inflection point on the graph of a function y=f(x) is defined as a point at which the graph passes from one side of its tangent line to another. At an inflection point, the graph changes the direction of its convexity. If the second derivative at some x0 is equal to zero and second derivative changes sign as x passes through x0, then (x0, f(x0)) is an inflection point.
What is the significance of the points of inflection?
Leave a comment