f(x,y)=x+ysinx
fy′(x,y)=sinx
derivative equals 0 when x=π∗n , n=0,±1,±2,...
fx′(x,y)=1+ycosx
derivative equals 0 when y=−cosx1 .
y=−1 when n is even and y=1 when n is odd.
fxx′′(x,y)=−ysinx
A=fxx′′(π∗n,±1)=0
fyy′′(x,y)=0
B=fyy′′(π∗n,±1)=0
fxy′′(x,y)=cosx
D=fxy′′(π∗n,±1)=±1
AB−D2=−1<0
so the function has no extremum
Comments