The acceleration of a moving object can be modelled by the following
equation.
a = 3t^2
i) Using integration v = ∫ a dt to find the value of the velocity value of
the velocity at 0 ≤ t ≤ 2.2 (s).
ii) Using trapezium rules (n=6) to find the mean value of the velocity over
a range of 0 ≤ t ≤ 2.2.
iii) Using a computer spreadsheet to increase the number of intervals to
n=12 for the numerical method and compare your obtained results
with (i) and (ii).
iv) Evaluate all obtained results (form i to iv steps) using technically correct
language and a logical structure to identify whether the size of
numerical steps (intervals) and applied various numerical techniques
have affected the obtained result.
"a = 3t\u00b2"
(i) "v = \\int a\\ dt = \\int3t\u00b2\\ dt = t\u00b3"
"v(0) = 0\u00b3 = 0m\/s\\\\\n\nv(2.2) = 2.2\u00b3 = 10.648m\/s"
(ii) "\\int^{2.2}_{{{0}}}3t\u00b2 \\ dt"
"f(x) = 3t\u00b2, \\quad a={ {{0}} } , \\quad b = 2.2"
The width of each subinterval is
"\u0394\n\nx\n\n=\n\n\\dfrac{b\n\n\u2212\n\na}{\n\nn}\n=\n\n\\dfrac{2.2}{\n\n6}=0.37"
so the grid points have the coordinates
"x\n_\ni\n\n=\ni\n0.37"
Calculate the values of the function f(x) at the points xi:
"{f\\left( {{x_0}} \\right) }={ f\\left( 0 \\right) }={ {3}{( {{0 \u00b2)}} }}={ {0^2} }={ 0}"
"{f\\left( {{x_1}} \\right) }={ f\\left( {0.37} \\right) }={ {3}(0.37\u00b2}) = 0.4107"
"{f\\left( {{x_2}} \\right) }={ f\\left( {2(0.37)} \\right) }={ {3}(0.74\u00b2}) = 1.6428"
"{f\\left( {{x_3}} \\right) }={ f\\left( {3(0.37)} \\right) }={ {3}(1.11\u00b2}) = 3.6963"
"{f\\left( {{x_4}} \\right) }={ f\\left( {4(0.37)} \\right) }={ {3}(1.48\u00b2}) = 6.5712"
"{f\\left( {{x_5}} \\right) }={ f\\left( {6(0.37)} \\right) }={ {3}(1.85\u00b2}) = 10.2675"
"{f\\left( {{x_6}} \\right) }={ f\\left( {2(0.37)} \\right) }={ {3}(2.22\u00b2}) = 14.7852"
The Trapezoidal Rule formula is written in the form;
"{\\int^{2.2}_{{{0}}}3t\u00b2\\ dt \\approx {T_6} }={ \\frac{{\\Delta x}}{2}\\left[ {f\\left( {{x_0}} \\right) + 2f\\left( {{x_1}} \\right) + \\cdots }\\right.}+{\\left.{ 2f\\left( {{x_5}} \\right) + f\\left( {{x_6}} \\right)} \\right] }={ \\frac{0.37}{{2}}\\left[ {0 + 2 \\cdot 0.4107 + 2 \\cdot 1.6428 }\\right.}+{\\left.{ 2 \\cdot 3.6963 + 2 \\cdot 6.5712 + 2 \\cdot 10.2675 + 2\\cdot14.7852} \\right] }="
"19.2986\\ m\/s"
(iii) "\\int^{2.2}_{{ {0} }} a\\ dt = \\int^{2.2}_{{ {0} }}3t\u00b2\\ dt = [t\u00b3]^{2.2}_{ {{0} }} = 2.2\u00b3 - 0\u00b3 = 10.648 \\ m\/s"
which coincides with the original value
(iv) all numerical steps have affected the original obtained result.
Comments
Leave a comment