Using the epsilon minus delta definition,show that lim X tends to 2 (3x-5)=1
Given any "\\epsilon>0" we choose "\\delta_{\\epsilon}<\\dfrac{\\epsilon}{3}"
we have to prove that given any "\\epsilon>0" we can find a "\\delta_{\\epsilon}" such that
"|f(x)-1|<\\epsilon \\text{ for } x\\in (2-\\delta_{\\epsilon},2+\\delta_{\\epsilon})"
we evaluate the difference:
"|f(x)-1|=|3x-5-1|=|3x-6|=3|x-2|"
and we can see that-
"|f(x)-1|<\\epsilon \\Rightarrow |x-2|<\\dfrac{\\epsilon}{3}"
So, given "\\epsilon>0" we can choose "\\delta_{\\epsilon}" and we have:
"x\\in (2-\\delta_{\\epsilon},2+\\delta_{\\epsilon})\\Rightarrow |x-2|<\\dfrac{\\epsilon}{3}\\Rightarrow |f(x)-1|<\\epsilon"
Which prove the above point.
Comments
Leave a comment