G i v e n 3 x y 2 + 4 x y − ( y − 5 ) ( 2 x 2 − 1 ) = 11... ( 1 ) T o f i n d d y d x , w h e n x = 1. W e u s e i m p l i c i t d i f f e r e n t i a t i o n S u b s t i t u t i n g x = 1 i n ( 1 ) , w e g e t 3 ( 1 ) y 2 + 4 ( 1 ) y − ( y − 5 ) ( 2 ( 1 ) 2 − 1 ) = 11 ⇒ 3 y 2 + 4 y − ( y − 5 ) = 11 ⇒ 3 y 3 + 4 − y ( y − 5 ) y = 11 ⇒ 3 y 3 + 4 − y ( y − 5 ) = 11 y ( b y c r o s s m u l t i p l i c a t i o n ) ⇒ 3 y 3 + 4 − y 2 + 5 y − 11 y = 0 ⇒ 3 y 3 − y 2 − 6 y + 4 = 0 Given \ 3xy^2 +\frac{4x}{y}-\frac{(y-5)}{(2x^2-1)}=11...(1)\\
To \ find \ \frac{dy}{dx} , when \ x=1.\\
We \ use \ implicit \ differentiation \\
Substituting \ x=1 \ in \ (1), we \ get \\
3(1)y^2 +\frac{4(1)}{y}-\frac{(y-5)}{(2(1)^2-1)}=11\\
\Rightarrow 3y^2 +\frac{4}{y}-(y-5)=11\\
\Rightarrow \frac{3y^3 +4-y(y-5)}{y}=11\\
\Rightarrow 3y^3 +4-y(y-5)=11y \ (by\ cross \ multiplication)\\
\Rightarrow 3y^3 +4-y^2+5y-11y=0\\
\Rightarrow 3y^3 -y^2-6y+4=0\\ G i v e n 3 x y 2 + y 4 x − ( 2 x 2 − 1 ) ( y − 5 ) = 11... ( 1 ) T o f in d d x d y , w h e n x = 1. W e u se im pl i c i t d i ff ere n t ia t i o n S u b s t i t u t in g x = 1 in ( 1 ) , w e g e t 3 ( 1 ) y 2 + y 4 ( 1 ) − ( 2 ( 1 ) 2 − 1 ) ( y − 5 ) = 11 ⇒ 3 y 2 + y 4 − ( y − 5 ) = 11 ⇒ y 3 y 3 + 4 − y ( y − 5 ) = 11 ⇒ 3 y 3 + 4 − y ( y − 5 ) = 11 y ( b y cross m u lt i pl i c a t i o n ) ⇒ 3 y 3 + 4 − y 2 + 5 y − 11 y = 0 ⇒ 3 y 3 − y 2 − 6 y + 4 = 0 S i n c e t h e s u m o f t h e c o e f f i c i e n t s i s e q u a l t o z e r o y = 1 i s a r o o t o f 3 y 3 − y 2 − 6 y + 4 = 0 B y s y n t h e t i c d i v i s i o n w e g e t 3 y 2 + 2 y − 4 a s a f a c t o r ⇒ y = − 1 + ( 13 ) 3 a n d y = − 1 − ( 13 ) 3 ∴ y = 1 , − 1 + ( 13 ) 3 a n d − 1 − ( 13 ) 3 Since \ the \ sum \ of \ the \ coefficients \ is \ equal \ to \ zero \\
y=1 \ is \ a \ root \ of \ 3y^3-y^2-6y+4=0\\
By \ synthetic \ division \ we \ get \ 3y^2 +2y-4 \ as \ a \ factor\\
\Rightarrow y=\frac{-1+\sqrt(13)}{3} \ and \ y=\frac{-1-\sqrt(13)}{3}\\
\therefore y=1,\ \frac{-1+\sqrt(13)}{3} \ and \ \frac{-1-\sqrt(13)}{3}\\ S in ce t h e s u m o f t h e coe ff i c i e n t s i s e q u a l t o zero y = 1 i s a roo t o f 3 y 3 − y 2 − 6 y + 4 = 0 B y sy n t h e t i c d i v i s i o n w e g e t 3 y 2 + 2 y − 4 a s a f a c t or ⇒ y = 3 − 1 + ( 13 ) an d y = 3 − 1 − ( 13 ) ∴ y = 1 , 3 − 1 + ( 13 ) an d 3 − 1 − ( 13 ) Differentiating (1), with \ respect \ to \ 'x',\ we \ get \\
\frac{d}{dx}(3x^2y +\frac{4x}{y}-\frac{(y-5)})=\frac{d}{dx}(11) \\
\Rightarrow
\frac{d}{dx}(3x^2y)+\frac{d}{dx}(\frac{4x}{y})-\frac{d}{dx}(\frac{(y-5)}{(2x^2-1)})=\frac{d}{dx}(11)\\
\Rightarrow [(3x^2)\frac{d}{dx}(y) +3y\frac{d}{dx}(x^2)]+[\frac{y\frac{d}{dx}(4x)-4x\frac{d}{dx}(y)}{y^2}]\\
-[\frac{(2x^2-1)\frac{d}{dx}(y-5)-(y-5)\frac{d}{dx}(2x^2-1)}{(2x^2-1)^2}]=0\\
\Rightarrow [(3x^2)\frac{dy}{dx} +6xy]+[\frac{4y-4x\frac{dy}{dx}}{y^2}]\\
-[\frac{(2x^2-1)\frac{dy}{dx}-(y-5)(4x)}{(2x^2-1)^2}]=0\\
Regrouping \ the \ terms \ containing \ \frac{dy}{dx}, we get \\
[3x^2-\frac{4x}{y^2}-\frac{1}{(2x^2-1)}]\frac{dy}{dx}=[-6xy-\frac{4y}{y^2}-\frac{(y-5)(4x)}{(2x^2-1)^2}]\\
\Rightarrow \frac{dy}{dx}=\frac{[-6xy-\frac{4y}{y^2}-\frac{(y-5)(4x)}{(2x^2-1)^2}]}{[3x^2-\frac{4x}{y^2}-\frac{1}{(2x^2-1)}]}\\
Substituting \ x=1 \ and \ y=1 \ in \frac{dy}{dx}, we \ get \\
[\frac{dy}{dx}]_{x=1,y=1}=\frac{[-6(1)(1)-\frac{4(1)}{(1)^2}-\frac{(1-5)(4(1))}{(2(1)^2-1)^2}]}{[3(1)^2-\frac{4(1)}{(1)^2}-\frac{1}{(2(1)^2-1)}]}\\
=\frac{[-6-4+16]}{[3-4-1]}\\
=\frac{(6)}{(-2)}=-3\\
\therefore [\frac{dy}{dx}]_{x=1,y=1}=-3
Comments