Question #178354

Integration Procedures (Integration by Parts)


∫ θ cosθ dθ


1
Expert's answer
2021-04-29T16:58:39-0400
θcosθdθ\int\theta\cos \theta d\theta

Integration by Parts


udv=uvvdu\int u dv=uv-\int v du

u=θ,du=dθu=\theta , du=d\theta


dv=cosθdθ,v=cosθdθ=sinθdv=\cos \theta d\theta, v=\int \cos \theta d\theta=\sin \theta

θcosθdθ=θsinθsinθdθ\int\theta\cos \theta d\theta=\theta\sin \theta-\int\sin \theta d\theta

=θsinθ+cosθ+C=\theta\sin \theta+\cos \theta +C


θcosθdθ=θsinθ+cosθ+C\int\theta\cos \theta d\theta=\theta\sin \theta+\cos \theta +C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS