As we know, two functions f(x,y) and g(x,y) are dependent if the Jacobi matrix is equal to zero :
J=∂(x,y)∂(f,g)=∣∣fx′gx′fy′gy′∣∣
In our case,
f(x,y)=lnx−lny⟶⎩⎨⎧fx′=x1fy′=−y1g(x,y)=2xyx2+3y2≡2yx+2x3y⟶⎩⎨⎧gx′=2y1−2x23ygy′=−2y2x+2x3
Then,
J=∣∣fx′gx′fy′gy′∣∣=∣∣x12y1−2x23y−y1−2y2x+2x3∣∣==x1⋅(−2y2x+2x3)−(−y1)⋅(2y1−2x23y)==−2y21+2x23+2x21−2x23≡0⟶Conclusion,J(f,g)≡0,∀(x,y)∈D={(x,y)∣x>0,y>0}
To find the functional relationship between f(x,y) and g(x,y) we will do the following :
z=f(x,y)=lnx−lny≡ln(x/y)u=g(x,y)=2xyx2+3y2=21⋅(yx+3⋅xy)u=21⋅(yx+3⋅(yx)−1)
Our task is reduced to finding a function φ between variables z and u .
As we know
ez=eln(x/y)=yxe−z=e−ln(x/y)=eln(y/x)=xyφ(z)=21⋅(ez+3e−z)
Or in the original notation
φ(f(x,y))=21⋅(ef(x,y)+3e−f(x,y))≡g(x,y)
Comments