Question #176388

Let D: {(x,y)| x>0, y>0}. Consider two function f and g from D to R, defined by:

f(x,y) = Inx - Iny and g(x,y)= x^2+ 3y^2/(2xy)

Show that the necessary condition for the functional dependence of f and g is satisfied. Also find a functional relation between f and g


1
Expert's answer
2021-04-14T07:12:07-0400

As we know, two functions f(x,y)f(x,y) and g(x,y)g(x,y) are dependent if the Jacobi matrix is equal to zero :



J=(f,g)(x,y)=fxfygxgyJ=\frac{\partial\left(f,g\right)}{\partial\left(x,y\right)}= \left|\begin{array}{cc} f'_x&f'_y\\[0.3cm] g'_x&g'_y \end{array}\right|

In our case,



f(x,y)=lnxlny{fx=1xfy=1yg(x,y)=x2+3y22xyx2y+3y2x{gx=12y3y2x2gy=x2y2+32xf(x,y)=\ln x-\ln y\longrightarrow\left\{ \begin{array}{l} f'_x=\displaystyle\frac{1}{x}\\[0.3cm] f'_y=-\displaystyle\frac{1}{y} \end{array}\right.\\[0.3cm] g(x,y)=\frac{x^2+3y^2}{2xy}\equiv\frac{x}{2y}+\frac{3y}{2x}\longrightarrow\left\{ \begin{array}{l} g'_x=\displaystyle\frac{1}{2y}-\displaystyle\frac{3y}{2x^2}\\[0.3cm] g'_y=-\displaystyle\frac{x}{2y^2}+\displaystyle\frac{3}{2x} \end{array}\right.\\[0.3cm]

Then,



J=fxfygxgy=1x1y12y3y2x2x2y2+32x==1x(x2y2+32x)(1y)(12y3y2x2)==12y2+32x2+12x232x20Conclusion,J(f,g)0,(x,y)D={(x,y)x>0,y>0}J=\left|\begin{array}{cc} f'_x&f'_y\\[0.3cm] g'_x&g'_y \end{array}\right|=\left|\begin{array}{cc} \displaystyle\frac{1}{x} &-\displaystyle\frac{1}{y}\\[0.5cm] \displaystyle\frac{1}{2y}-\displaystyle\frac{3y}{2x^2}& -\displaystyle\frac{x}{2y^2}+\displaystyle\frac{3}{2x} \end{array}\right|=\\[0.3cm] =\frac{1}{x}\cdot\left(-\frac{x}{2y^2}+\frac{3}{2x}\right)- \left(-\frac{1}{y}\right)\cdot\left(\frac{1}{2y}-\frac{3y}{2x^2}\right)=\\[0.3cm] =-\frac{1}{2y^2}+\frac{3}{2x^2}+\frac{1}{2x^2}-\frac{3}{2x^2}\equiv0\longrightarrow\\[0.3cm] \boxed{\text{Conclusion,}\,\,\,J\left(f,g\right)\equiv0,\,\,\forall (x,y)\in D=\left\{(x,y)\left|x>0,y>0\right.\right\}}

To find the functional relationship between f(x,y)f(x,y) and g(x,y)g(x,y) we will do the following :



z=f(x,y)=lnxlnyln(x/y)u=g(x,y)=x2+3y22xy=12(xy+3yx)u=12(xy+3(xy)1)z=f(x,y)=\ln x-\ln y\equiv\ln\left(x/y\right)\\[0.3cm] u=g(x,y)=\frac{x^2+3y^2}{2xy}=\frac{1}{2}\cdot\left(\frac{x}{y}+3\cdot\frac{y}{x}\right)\\[0.3cm] u=\frac{1}{2}\cdot\left(\frac{x}{y}+3\cdot\left(\frac{x}{y}\right)^{-1}\right)

Our task is reduced to finding a function φ\varphi between variables zz and uu .

As we know



ez=eln(x/y)=xyez=eln(x/y)=eln(y/x)=yxφ(z)=12(ez+3ez)e^z=e^{\ln\left(x/y\right)}=\frac{x}{y}\\[0.3cm] e^{-z}=e^{-\ln\left(x/y\right)}=e^{\ln\left(y/x\right)}=\frac{y}{x}\\[0.3cm] \varphi(z)=\frac{1}{2}\cdot\left(e^z+3e^{-z}\right)

Or in the original notation



φ(f(x,y))=12(ef(x,y)+3ef(x,y))g(x,y)\boxed{\varphi\left(f(x,y)\right)=\frac{1}{2}\cdot\left(e^{f(x,y)}+3e^{-f(x,y)}\right)\equiv g(x,y)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS