Find the directional derivative of the function at P in the direction of v. f(x, y) =
x/y P(1,1) v = −j
Let's find the partial derivatives:
"\\frac{{\\partial f}}{{\\partial x}} = \\frac{\\partial }{{\\partial x}}\\left( {\\frac{x}{y}} \\right) = \\frac{1}{y} \\Rightarrow \\frac{{\\partial f}}{{\\partial x}}\\left( P \\right) = 1"
"\\frac{{\\partial f}}{{\\partial y}} = \\frac{\\partial }{{\\partial y}}\\left( {\\frac{x}{y}} \\right) = - \\frac{x}{{{y^2}}} \\Rightarrow \\frac{{\\partial f}}{{\\partial y}}\\left( P \\right) = - \\frac{1}{{{1^2}}} = - 1"
find the direction cosines:
"\\left| {\\overline v } \\right| = \\sqrt {{0^2} + {{( - 1)}^2}} = 1"
"\\cos \\alpha = \\frac{0}{1} = 0,\\,\\,\\cos \\beta = - \\frac{1}{1} = - 1"
Then
"\\frac{{df}}{{dv}} = \\frac{{\\partial f}}{{\\partial x}}\\left( P \\right)\\cos \\alpha + \\frac{{\\partial f}}{{\\partial y}}\\left( P \\right)\\cos \\beta = 1 \\cdot 0 - 1 \\cdot \\left( { - 1} \\right) = 1"
Answer: 1
Comments
Leave a comment