Evaluate the integral of sin2x dx/(2+sin² x)
Ans:-
∫Sin2x2+sin2xdx\int\dfrac{Sin2x}{2+sin^2x}dx∫2+sin2xSin2xdx
Sin2x=2×(Sinx)×(Cosx)Sin2x=2\times(Sinx)\times(Cosx)Sin2x=2×(Sinx)×(Cosx)
put 2+Sin2x=t⇒2Sinxcosxdx=dt2+Sin^2x=t \Rightarrow 2Sinxcosxdx=dt2+Sin2x=t⇒2Sinxcosxdx=dt
∫dtt=lnt+C\int\dfrac{dt}{t}=lnt +C∫tdt=lnt+C
⇒ln(2+Sin2x)+C\Rightarrow ln(2+Sin^2x)+C⇒ln(2+Sin2x)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments