Evaluate the integral of tan^(-1) x dx/(1+x²)
"\\int\\cfrac{\\tan^{-1}(x)dx}{1+x^2} = \\int\\cfrac{\\arctan (x)}{1+x^2}dx = [t = \\arctan (x), dt = \\cfrac{dx}{1+x^2}] =\\\\\n= \\int tdt = \\cfrac{t^2}{2}+C|_{t=\\arctan(x)}=\\cfrac{\\arctan^2(x)}{2}+C"
Comments
Leave a comment