Evaluate the integral of tan^(-1) x dx/(1+x²)
∫tan−1(x)dx1+x2=∫arctan(x)1+x2dx=[t=arctan(x),dt=dx1+x2]==∫tdt=t22+C∣t=arctan(x)=arctan2(x)2+C\int\cfrac{\tan^{-1}(x)dx}{1+x^2} = \int\cfrac{\arctan (x)}{1+x^2}dx = [t = \arctan (x), dt = \cfrac{dx}{1+x^2}] =\\ = \int tdt = \cfrac{t^2}{2}+C|_{t=\arctan(x)}=\cfrac{\arctan^2(x)}{2}+C∫1+x2tan−1(x)dx=∫1+x2arctan(x)dx=[t=arctan(x),dt=1+x2dx]==∫tdt=2t2+C∣t=arctan(x)=2arctan2(x)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments