Question #174615

Evaluate the integral of √(3x + 1) dx from 1 to 5


1
Expert's answer
2021-03-24T14:21:03-0400

Solution.

153x+1dx.\int\limits_1^5\sqrt{3x+1}dx.

Make a substitution:

t=3x+1,t=3x+1, then dt=3dx,dt=3dx, hence dx=13dt.dx=\frac{1}{3}dt.

3x+1dx=13tdt==13t3232=29t32==29(3x+1)32.\int\sqrt{3x+1}dx=\int\frac{1}{3}\sqrt{t}dt=\newline =\frac{1}{3}\frac{t^{\frac{3}{2}}}{\frac{3}{2}}=\frac{2}{9}t^{\frac{3}{2}}=\newline =\frac{2}{9}(3x+1)^{\frac{3}{2}}.

So,

153x+1dx=(29(3x+1)32)15==1289169=1129=1249.\int\limits_1^5\sqrt{3x+1}dx=(\frac{2}{9}(3x+1)^{\frac{3}{2}})|_1^5=\newline =\frac{128}{9}-\frac{16}{9}=\frac{112}{9}=12\frac{4}{9}.

Answer: 153x+1dx=1249.\int\limits_1^5\sqrt{3x+1}dx=12\frac{4}{9}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS