Solution.
∫ 1 5 3 x + 1 d x . \int\limits_1^5\sqrt{3x+1}dx. 1 ∫ 5 3 x + 1 d x . Make a substitution:
t = 3 x + 1 , t=3x+1, t = 3 x + 1 , then d t = 3 d x , dt=3dx, d t = 3 d x , hence d x = 1 3 d t . dx=\frac{1}{3}dt. d x = 3 1 d t .
∫ 3 x + 1 d x = ∫ 1 3 t d t = = 1 3 t 3 2 3 2 = 2 9 t 3 2 = = 2 9 ( 3 x + 1 ) 3 2 . \int\sqrt{3x+1}dx=\int\frac{1}{3}\sqrt{t}dt=\newline
=\frac{1}{3}\frac{t^{\frac{3}{2}}}{\frac{3}{2}}=\frac{2}{9}t^{\frac{3}{2}}=\newline
=\frac{2}{9}(3x+1)^{\frac{3}{2}}. ∫ 3 x + 1 d x = ∫ 3 1 t d t = = 3 1 2 3 t 2 3 = 9 2 t 2 3 = = 9 2 ( 3 x + 1 ) 2 3 .
So,
∫ 1 5 3 x + 1 d x = ( 2 9 ( 3 x + 1 ) 3 2 ) ∣ 1 5 = = 128 9 − 16 9 = 112 9 = 12 4 9 . \int\limits_1^5\sqrt{3x+1}dx=(\frac{2}{9}(3x+1)^{\frac{3}{2}})|_1^5=\newline
=\frac{128}{9}-\frac{16}{9}=\frac{112}{9}=12\frac{4}{9}. 1 ∫ 5 3 x + 1 d x = ( 9 2 ( 3 x + 1 ) 2 3 ) ∣ 1 5 = = 9 128 − 9 16 = 9 112 = 12 9 4 .
Answer: ∫ 1 5 3 x + 1 d x = 12 4 9 . \int\limits_1^5\sqrt{3x+1}dx=12\frac{4}{9}. 1 ∫ 5 3 x + 1 d x = 12 9 4 .
Comments