Evaluate the integral of √(3x + 1) dx from 1 to 5
Solution.
"\\int\\limits_1^5\\sqrt{3x+1}dx."Make a substitution:
"t=3x+1," then "dt=3dx," hence "dx=\\frac{1}{3}dt."
"\\int\\sqrt{3x+1}dx=\\int\\frac{1}{3}\\sqrt{t}dt=\\newline\n=\\frac{1}{3}\\frac{t^{\\frac{3}{2}}}{\\frac{3}{2}}=\\frac{2}{9}t^{\\frac{3}{2}}=\\newline\n=\\frac{2}{9}(3x+1)^{\\frac{3}{2}}."
So,
"\\int\\limits_1^5\\sqrt{3x+1}dx=(\\frac{2}{9}(3x+1)^{\\frac{3}{2}})|_1^5=\\newline\n=\\frac{128}{9}-\\frac{16}{9}=\\frac{112}{9}=12\\frac{4}{9}."
Answer: "\\int\\limits_1^5\\sqrt{3x+1}dx=12\\frac{4}{9}."
Comments
Leave a comment