Evaluate the integral of √(3x + 1) dx from 1 to 5
Solution.
Make a substitution:
t=3x+1,t=3x+1,t=3x+1, then dt=3dx,dt=3dx,dt=3dx, hence dx=13dt.dx=\frac{1}{3}dt.dx=31dt.
∫3x+1dx=∫13tdt==13t3232=29t32==29(3x+1)32.\int\sqrt{3x+1}dx=\int\frac{1}{3}\sqrt{t}dt=\newline =\frac{1}{3}\frac{t^{\frac{3}{2}}}{\frac{3}{2}}=\frac{2}{9}t^{\frac{3}{2}}=\newline =\frac{2}{9}(3x+1)^{\frac{3}{2}}.∫3x+1dx=∫31tdt==3123t23=92t23==92(3x+1)23.
So,
∫153x+1dx=(29(3x+1)32)∣15==1289−169=1129=1249.\int\limits_1^5\sqrt{3x+1}dx=(\frac{2}{9}(3x+1)^{\frac{3}{2}})|_1^5=\newline =\frac{128}{9}-\frac{16}{9}=\frac{112}{9}=12\frac{4}{9}.1∫53x+1dx=(92(3x+1)23)∣15==9128−916=9112=1294.
Answer: ∫153x+1dx=1249.\int\limits_1^5\sqrt{3x+1}dx=12\frac{4}{9}.1∫53x+1dx=1294.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments