a) Draw a graph of the displacement y(m) against time t(s) for the time t=0s to t=2s
Solution:
Here, we assume that y=sin3ty=\sin 3ty=sin3t
From t=0t=0t=0 to t=2t=2t=2
At t=0,t=0,t=0, y=sin3(0)=sin0=0y=\sin3(0)=\sin0=0y=sin3(0)=sin0=0
At t=12,t=\dfrac12,t=21, y=sin3(12)=sin1.5=0.9974y=\sin3(\dfrac12)=\sin1.5=0.9974y=sin3(21)=sin1.5=0.9974
At t=1,t=1,t=1, y=sin3(1)=sin3=0.14112y=\sin3(1)=\sin3=0.14112y=sin3(1)=sin3=0.14112
At t=2,t=2,t=2, y=sin3(2)=sin6=−0.27941y=\sin3(2)=\sin6=-0.27941y=sin3(2)=sin6=−0.27941
Plotting these points and using general graph of sint\sin tsint , we get:
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments