If x is an arbitrary real number, show that there exists a unique n ∈ Z such that n ≤ x < n + 1. (This is called the greatest integer in x and denoted by [x].)
"Solution: Let ~A=\\{n\\in Z| n\\leqslant x \\}.~\\\\ We~know~that, If~x~is ~an~arbitrary~real~number,~there~exist~integers~m~and~n~\\\\such~that~m<x<n."
"\\Rightarrow ~A ~is~non-empty.\\\\It ~is~also~bounded~ above,~So~by~completness~axiom,~s=sup(A)~exists."
"Now,~by~property~of~sup,~there~exists~n\\in A~such~that~s-1<n\\leqslant s. \\\\Clearly~,~n\\leqslant x.~Now,s-1<n~implies ~taht~n+1~does~not ~belong~to~A."
"Hence~x<n+1.~This ~show~that~there~ is~an~ n~ which~ satisfies~ n\\leqslant x<n+1."
"~~~~Now, ~to~show~uniqueness,~assume~on~the~contrary~that~there~exists~\\\\m\\neq n~such~that~m\\leqslant x<m+1.~Then~m \\in A~and ~we~must~have~m\\leqslant n"
"(Otherwise~,~if~m>n~,~then~m\\geqslant n+1>x,~so~m~can~not~satisfy~~the \\\\~said~inequality).~If ~m<n~ then ~(since~ both~ are~ integers)~(n-m)\\geqslant1."
"Hence~,m+1\\leqslant n \\leqslant x,~wich~contradicts~the~assumption~that~m~satisfies~the ~\\\\given~inequality."
"Hence, there~ exists ~a~ unique~ n \u2208 Z ~such ~that~ n \u2264 x < n + 1,~where~x~ is ~an~ \\\\arbitrary ~real~ number."
Comments
Leave a comment