Question #155593

If x is an arbitrary real number, show that there exists a unique n ∈ Z such that n ≤ x < n + 1. (This is called the greatest integer in x and denoted by [x].) 


1
Expert's answer
2021-01-17T17:31:49-0500

Solution:Let A={nZnx}. We know that,If x is an arbitrary real number, there exist integers m and n such that m<x<n.Solution: Let ~A=\{n\in Z| n\leqslant x \}.~\\ We~know~that, If~x~is ~an~arbitrary~real~number,~there~exist~integers~m~and~n~\\such~that~m<x<n.

 A is nonempty.It is also bounded above, So by completness axiom, s=sup(A) exists.\Rightarrow ~A ~is~non-empty.\\It ~is~also~bounded~ above,~So~by~completness~axiom,~s=sup(A)~exists.

Now, by property of sup, there exists nA such that s1<ns.Clearly , nx. Now,s1<n implies taht n+1 does not belong to A.Now,~by~property~of~sup,~there~exists~n\in A~such~that~s-1<n\leqslant s. \\Clearly~,~n\leqslant x.~Now,s-1<n~implies ~taht~n+1~does~not ~belong~to~A.

Hence x<n+1. This show that there is an n which satisfies nx<n+1.Hence~x<n+1.~This ~show~that~there~ is~an~ n~ which~ satisfies~ n\leqslant x<n+1.

    Now, to show uniqueness, assume on the contrary that there exists mn such that mx<m+1. Then mA and we must have mn~~~~Now, ~to~show~uniqueness,~assume~on~the~contrary~that~there~exists~\\m\neq n~such~that~m\leqslant x<m+1.~Then~m \in A~and ~we~must~have~m\leqslant n

(Otherwise , if m>n , then mn+1>x, so m can not satisfy  the said inequality). If m<n then (since both are integers) (nm)1.(Otherwise~,~if~m>n~,~then~m\geqslant n+1>x,~so~m~can~not~satisfy~~the \\~said~inequality).~If ~m<n~ then ~(since~ both~ are~ integers)~(n-m)\geqslant1.

Hence ,m+1nx, wich contradicts the assumption that m satisfies the given inequality.Hence~,m+1\leqslant n \leqslant x,~wich~contradicts~the~assumption~that~m~satisfies~the ~\\given~inequality.

Hence,there exists a unique nZ such that nx<n+1, where x is an arbitrary real number.Hence, there~ exists ~a~ unique~ n ∈ Z ~such ~that~ n ≤ x < n + 1,~where~x~ is ~an~ \\arbitrary ~real~ number.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS