Question #153628

Show that there does not exist a non-constant continuous function f : R2 → R such that f(x, y) = 5 for all (x, y) ∈ R2 with x^2+y^2<1


1
Expert's answer
2021-01-04T20:48:22-0500

Let the function

f:R2Rf(x,y)={5if x2+y2<1x2+y2+4if x2+y21f:\R^2\rightarrow \R\ni\\ f(x,y) = \begin{cases} 5 &\text{if } x^2+y^2<1 \\ x^2+y^2+4 &\text{if } x^2+y^2\geq1 \end{cases}


We can see the continuity of f(x,y)f(x,y) by two processes.

(i)

for x2+y2<1x^2+y^2<1 , f(x,y)f(x,y) is a constant function.


for x2+y2<1,f(x,y)=x2+y2+4x^2+y^2<1 , f(x,y)= x^2+y^2+4 which is sum of three continuous functions,  x2,y2  and  4.\;x^2,y^2\;and \;4. So it is continuous.


for x2+y2=1x^2+y^2=1 , lim{(x,y)x2+y21}f(x,y)=5\lim_{\{(x,y)|x^2+y^2\rightarrow 1\}}f(x,y)=5 from all sides.


Therefore we can conclude that, f(x,y)  is  continuous  (x,y)R2f(x,y)\; is \; continuous \;\forall(x,y)\in \R^2 .


(ii) [By ϵδ\epsilon-\delta definition]

Let a point be (h,k)(h,k)

Given ϵ>0,\epsilon>0,


If   h2+k2<1,\; h^2+k^2<1 ,

Take   δ=min{h2+k2,1h2+k2}\;\delta = min\{\sqrt{ h^2+k^2},1-\sqrt{ h^2+k^2}\}

Let (x,y)R2d((h,k),(x,y))<δ(x,y)\in\R^2\ni d((h,k),(x,y))<\delta

f(x,y)=5f(x,y)f(h,k)=55=0<ϵ\Rightarrow f(x,y)=5\\ \Rightarrow |f(x,y)-f(h,k)|=|5-5|=0<\epsilon


If h2+k21,h^2+k^2\geq1,

Take δ=h2+k2h2+k2ϵ\delta =\sqrt{ h^2+k^2}-\sqrt{ h^2+k^2-\epsilon}

Let (x,y)R2d((h,k),(x,y))<δ(x,y)\in\R^2\ni d((h,k),(x,y))<\delta

(x,y){(p,q)(xh)2+(yk)2<δ2}f(x,y)[f(p1,q1),f(p2,q2)]where,  p12+q12=(h2+k2δ)2=(h2+k2ϵ)2=h2+k2ϵand,p22+q22=(h2+k2+δ)2h2+k2+ϵf(x,y)[h2+k2+4ϵ,h2+k2+4+ϵ]f(x,y)[f(h,k)ϵ,f(h,k)+ϵ]f(x,y)f(h,k)<ϵ\Rightarrow (x,y)\in \{(p,q)|(x-h)^2+(y-k)^2<\delta^2\}\\ \Rightarrow f(x,y)\in \left[f(p_1,q_1),f(p_2,q_2)\right]\\ where,\; p_1^2+q_1^2=(\sqrt{h^2+k^2}-\delta)^2=(\sqrt{h^2+k^2-\epsilon})^2=h^2+k^2-\epsilon\\ and, p_2^2+q_2^2=(\sqrt{h^2+k^2}+\delta)^2\leq h^2+k^2+\epsilon\\ \Rightarrow f(x,y)\in [h^2+k^2+4-\epsilon,h^2+k^2+4+\epsilon]\\ \Rightarrow f(x,y)\in [f(h,k)-\epsilon,f(h,k)+\epsilon]\\ \Rightarrow |f(x,y)-f(h,k)|<\epsilon


So, d((h,k),(x,y))<δd(f(x,y),f(h,k))<ϵd((h,k),(x,y))<\delta \Rightarrow d(f(x,y),f(h,k))<\epsilon


Hence f(x,y)\pmb{f(x,y)} is continuous (x,y)R2\pmb{\forall(x,y)\in \R^2} .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS