Show that there does not exist a non-constant continuous function f : R2 → R such that f(x, y) = 5 for all (x, y) ∈ R2 with x^2+y^2<1
Let the function
"f:\\R^2\\rightarrow \\R\\ni\\\\\nf(x,y) = \\begin{cases}\n 5 &\\text{if } x^2+y^2<1 \\\\\n x^2+y^2+4 &\\text{if } x^2+y^2\\geq1 \n\\end{cases}"
We can see the continuity of "f(x,y)" by two processes.
(i)
for "x^2+y^2<1" , "f(x,y)" is a constant function.
for "x^2+y^2<1 , f(x,y)= x^2+y^2+4" which is sum of three continuous functions,"\\;x^2,y^2\\;and \\;4." So it is continuous.
for "x^2+y^2=1" , "\\lim_{\\{(x,y)|x^2+y^2\\rightarrow 1\\}}f(x,y)=5" from all sides.
Therefore we can conclude that, "f(x,y)\\; is \\; continuous \\;\\forall(x,y)\\in \\R^2" .
(ii) [By "\\epsilon-\\delta" definition]
Let a point be "(h,k)"
Given "\\epsilon>0,"
If "\\; h^2+k^2<1 ,"
Take "\\;\\delta = min\\{\\sqrt{ h^2+k^2},1-\\sqrt{ h^2+k^2}\\}"
Let "(x,y)\\in\\R^2\\ni d((h,k),(x,y))<\\delta"
"\\Rightarrow f(x,y)=5\\\\\n\\Rightarrow |f(x,y)-f(h,k)|=|5-5|=0<\\epsilon"
If "h^2+k^2\\geq1,"
Take "\\delta =\\sqrt{ h^2+k^2}-\\sqrt{ h^2+k^2-\\epsilon}"
Let "(x,y)\\in\\R^2\\ni d((h,k),(x,y))<\\delta"
"\\Rightarrow (x,y)\\in \\{(p,q)|(x-h)^2+(y-k)^2<\\delta^2\\}\\\\\n\\Rightarrow f(x,y)\\in \\left[f(p_1,q_1),f(p_2,q_2)\\right]\\\\\nwhere,\\; p_1^2+q_1^2=(\\sqrt{h^2+k^2}-\\delta)^2=(\\sqrt{h^2+k^2-\\epsilon})^2=h^2+k^2-\\epsilon\\\\\nand, p_2^2+q_2^2=(\\sqrt{h^2+k^2}+\\delta)^2\\leq h^2+k^2+\\epsilon\\\\\n\\Rightarrow f(x,y)\\in [h^2+k^2+4-\\epsilon,h^2+k^2+4+\\epsilon]\\\\\n\\Rightarrow f(x,y)\\in [f(h,k)-\\epsilon,f(h,k)+\\epsilon]\\\\\n\\Rightarrow |f(x,y)-f(h,k)|<\\epsilon"
So, "d((h,k),(x,y))<\\delta \\Rightarrow d(f(x,y),f(h,k))<\\epsilon"
Hence "\\pmb{f(x,y)}" is continuous "\\pmb{\\forall(x,y)\\in \\R^2}" .
Comments
Leave a comment