Let the function
f:R2→R∋f(x,y)={5x2+y2+4if x2+y2<1if x2+y2≥1
We can see the continuity of f(x,y) by two processes.
(i)
for x2+y2<1 , f(x,y) is a constant function.
for x2+y2<1,f(x,y)=x2+y2+4 which is sum of three continuous functions,x2,y2and4. So it is continuous.
for x2+y2=1 , lim{(x,y)∣x2+y2→1}f(x,y)=5 from all sides.
Therefore we can conclude that, f(x,y)iscontinuous∀(x,y)∈R2 .
(ii) [By ϵ−δ definition]
Let a point be (h,k)
Given ϵ>0,
If h2+k2<1,
Take δ=min{h2+k2,1−h2+k2}
Let (x,y)∈R2∋d((h,k),(x,y))<δ
⇒f(x,y)=5⇒∣f(x,y)−f(h,k)∣=∣5−5∣=0<ϵ
If h2+k2≥1,
Take δ=h2+k2−h2+k2−ϵ
Let (x,y)∈R2∋d((h,k),(x,y))<δ
⇒(x,y)∈{(p,q)∣(x−h)2+(y−k)2<δ2}⇒f(x,y)∈[f(p1,q1),f(p2,q2)]where,p12+q12=(h2+k2−δ)2=(h2+k2−ϵ)2=h2+k2−ϵand,p22+q22=(h2+k2+δ)2≤h2+k2+ϵ⇒f(x,y)∈[h2+k2+4−ϵ,h2+k2+4+ϵ]⇒f(x,y)∈[f(h,k)−ϵ,f(h,k)+ϵ]⇒∣f(x,y)−f(h,k)∣<ϵ
So, d((h,k),(x,y))<δ⇒d(f(x,y),f(h,k))<ϵ
Hence f(x,y)f(x,y) is continuous ∀(x,y)∈R2∀(x,y)∈R2 .
Comments