"V=ah^3+bh+ch+d"
at Maximum and Minimum Volume, "\\frac{dV}{dh}=0"
getting the derivative of V w.r.t to h we obtain
"\\frac{dV}{dh}=3ah^2+2bh+c"
this implies that, "3ah^2+2bh+c=0"
solving for h using that maximizes/minimizes Volume using completing square we get:
"3ah^2+2bh=-c"
dividing by 3a, "h^2+\\frac{2b}{3a}h=\\frac{-c}{3a}"
completing the square, "h^2+\\frac{2b}{3a}h+(\\frac{b}{3a})^2=\\frac{-c}{3a}+\\frac{b^2}{9a^2}"
"(h+\\frac{b}{3a})^2= \\frac{b^2-3ac}{9a^2}"
"(h+\\frac{b}{3a})=\\sqrt\\frac{b^2-3ac}{9a^2}"
"h1= \\frac{b}{3a}+\\frac{\\sqrt {(b^2-3ac)}}{3a}"
"h1= \\frac{-b+\\sqrt{(b^2-3ac)}}{3a}"
"h2= \\frac{b}{3a}-\\frac{\\sqrt{(b^2-3ac)}}{3a}"
"h2= \\frac{-b-\\sqrt{(b^2-3ac)}}{3a}"
therefore, the volume will be maximum/minimum when
"h1= \\frac{-b+\\sqrt{(b^2-3ac)}}{3a}" and
"h2= \\frac{-b-\\sqrt{(b^2-3ac)}}{3a}" (condition)
At Maximum
"\\frac{dV}{dh}<0" at H1 and H2
At minimum
"\\frac{dV}{dh}>0" at H1 and H2
Comments
Leave a comment