Given equation of of the curve in parametric form is x = t 3 , y = 2 t 2 x=t^3, \: y=2t^2 x = t 3 , y = 2 t 2 . Now, we have to find the length of this curve from 0 ≤ t ≤ 1 0 \leq t \leq 1 0 ≤ t ≤ 1 .
Since, length of a parametric curve is given by,
L = ∫ t 1 t 2 ( d x d t ) 2 + ( d y d t ) 2 d t ( ⋆ ) L=\int_{t_1}^{t_2} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt \hspace{1.5cm} (\star) L = ∫ t 1 t 2 ( d t d x ) 2 + ( d t d y ) 2 d t ( ⋆ )
Thus, plugin
d x d t = 3 t 2 & d y d t = 4 t \frac{dx}{dt}=3t^2 \: \& \frac{dy}{dt}=4t d t d x = 3 t 2 & d t d y = 4 t in equation ( ⋆ ) (\star) ( ⋆ ) , we get
L = ∫ 0 1 ( 3 t 2 ) 2 + ( 4 t ) 2 d t L= \int_{0}^{1} \sqrt{(3t^2)^2 + (4t)^2} dt L = ∫ 0 1 ( 3 t 2 ) 2 + ( 4 t ) 2 d t
⟹ L = ∫ 0 1 t 9 t 2 + 16 d t \implies L= \int_{0}^{1} t\sqrt{9t^2 + 16} dt ⟹ L = ∫ 0 1 t 9 t 2 + 16 d t
Let, substitute u = 9 t 2 + 16 ⟹ d u 18 t = d t u= 9t^2 +16 \implies \frac{du}{18t}=dt u = 9 t 2 + 16 ⟹ 18 t d u = d t and u 16 25 t 0 1 \def\arraystretch{1.5}
\begin{array}{c:c:c}
u & 16 & 25\\ \hline
t & 0 & 1 \\
\end{array} u t 16 0 25 1 , hence
L = 1 18 ∫ 16 25 u d u L = 1 18 u 3 2 3 2 ∣ 16 25 L = 1 27 u 3 2 ∣ 16 25 L = 1 27 ( 2 5 3 2 − 1 6 3 2 ) = 61 27 L=\frac{1}{18}\int_{16}^{25} \sqrt{u} \:du\\
L=\frac{1}{18}\frac{ u^{\frac{3}{2}}}{\frac{3}{2}} \bigg|_{16}^{25} \\L=\frac{1}{27}u^{\frac{3}{2}}\bigg|_{16}^{25}\\L=\frac{1}{27}(25^{\frac{3}{2}}-16^{\frac{3}{2}})=\frac{61}{27} L = 18 1 ∫ 16 25 u d u L = 18 1 2 3 u 2 3 ∣ ∣ 16 25 L = 27 1 u 2 3 ∣ ∣ 16 25 L = 27 1 ( 2 5 2 3 − 1 6 2 3 ) = 27 61
Therefore, the required length is 61 27 \frac{61}{27} 27 61 .
Now we know that if y = f ( x ) y=f(x) y = f ( x ) is a parametric curve such that x = x ( t ) & y = y ( t ) x=x(t) \&y=y(t) x = x ( t ) & y = y ( t ) ,then slope of that curve at a point P P P with given parameter t = t 0 t=t_0 t = t 0 is given by,
y ′ = d y d x = d y d t d x d t ∣ t = t 0 ( ♠ ) y'=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\bigg|_{t=t_0}\hspace{1.5cm} (\spades) y ′ = d x d y = d t d x d t d y ∣ ∣ t = t 0 ( ♠ )
Thus, slope of the given curve at t = 1 2 t=\frac{1}{2} t = 2 1 is given by d y d x \frac{dy}{dx} d x d y ,thus from equation( ♠ ) (\spades) ( ♠ ) we get,
d y d x = 4 3 t ∣ t = 1 2 = 8 3 \frac{dy}{dx}=\frac{4}{3t} |_{t=\frac{1}{2}}=\frac{8}{3} d x d y = 3 t 4 ∣ t = 2 1 = 3 8 Hence, we are done.
Comments