Question #115179
Find the length of the curve given by x=t^3, y=2t^2 in 0<=t<=1. What is the slope of the curve at t=1/2.
1
Expert's answer
2020-05-12T18:31:14-0400

Given equation of of the curve in parametric form is x=t3,y=2t2x=t^3, \: y=2t^2 . Now, we have to find the length of this curve from 0t10 \leq t \leq 1 .

Since, length of a parametric curve is given by,

L=t1t2(dxdt)2+(dydt)2dt()L=\int_{t_1}^{t_2} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt \hspace{1.5cm} (\star)


Thus, plugin

dxdt=3t2&dydt=4t\frac{dx}{dt}=3t^2 \: \& \frac{dy}{dt}=4t

in equation ()(\star), we get

L=01(3t2)2+(4t)2dtL= \int_{0}^{1} \sqrt{(3t^2)^2 + (4t)^2} dt

    L=01t9t2+16dt\implies L= \int_{0}^{1} t\sqrt{9t^2 + 16} dt


Let, substitute u=9t2+16    du18t=dtu= 9t^2 +16 \implies \frac{du}{18t}=dt and u1625t01\def\arraystretch{1.5} \begin{array}{c:c:c} u & 16 & 25\\ \hline t & 0 & 1 \\ \end{array} , hence

L=1181625uduL=118u32321625L=127u321625L=127(25321632)=6127L=\frac{1}{18}\int_{16}^{25} \sqrt{u} \:du\\ L=\frac{1}{18}\frac{ u^{\frac{3}{2}}}{\frac{3}{2}} \bigg|_{16}^{25} \\L=\frac{1}{27}u^{\frac{3}{2}}\bigg|_{16}^{25}\\L=\frac{1}{27}(25^{\frac{3}{2}}-16^{\frac{3}{2}})=\frac{61}{27}

Therefore, the required length is 6127\frac{61}{27} .

Now we know that if y=f(x)y=f(x) is a parametric curve such that x=x(t)&y=y(t)x=x(t) \&y=y(t) ,then slope of that curve at a point PP with given parameter t=t0t=t_0 is given by,

y=dydx=dydtdxdtt=t0()y'=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\bigg|_{t=t_0}\hspace{1.5cm} (\spades)

Thus, slope of the given curve at t=12t=\frac{1}{2} is given by dydx\frac{dy}{dx} ,thus from equation()(\spades) we get,


dydx=43tt=12=83\frac{dy}{dx}=\frac{4}{3t} |_{t=\frac{1}{2}}=\frac{8}{3}

Hence, we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS