Question #114469


Find f(0),f(2),f(-2),f(3),f(√2 ), and f(3t) if :

a) f(x)=3x^2 -2

b) f(x)=√(x+1)


1
Expert's answer
2020-05-11T10:59:06-0400


a) f(x)=3x22,f(x)=3x^2-2,

f(0)=3022=2f(0)=3*0^2-2=-2

f(2)=3222=342=10f(2)=3*2^2-2=3*4-2=10

f(2)=3(2)22=342=10f(-2)=3*(-2)^2-2=3*4-2=10

f(3)=3322=392=25f(3)=3*3^2-2=3*9-2=25

f(2)=3(2)22=322=4f(\sqrt{2})=3*(\sqrt{2})^2-2=3*2-2=4

f(3t)=3(3t)22=39t22=27t22f(3t)=3*(3t)^2-2=3*9t^2-2=27t^2-2


b) f(x)=x+1,f(x)=\sqrt{x+1},

f(0)=0+1=1f(0)=\sqrt{0+1}=1

f(2)=2+1=3f(2)=\sqrt{2+1}=\sqrt{3}

f(2)=2+1=1f(-2)=\sqrt{-2+1}=\sqrt{-1} is undetermined in real numbers

f(3)=3+1=4=2f(3)=\sqrt{3+1}=\sqrt{4}=2

f(2)=2+1f(\sqrt{2})=\sqrt{\sqrt{2}+1}

f(3t)=3t+1f(3t)=\sqrt{3t+1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS