A.
Revenue function = (price per unit) × (quantity of units)
R=p(x)⋅x=(580−10x)x=580x−10x2Total point
C(x)=(30+5x)2=900+300x+25x2 Marginal revenue
R′(x)=dxdR=(580x−10x2)′=580−20x B.
C(x)=900+300x+25x2
Fixed cost=900
Marginal cost=C′(x)=(900+300x+25x2)′==300+50x C.
Profit function = revenue − cost
P(X)=R(x)−C(x)==580x−10x2−(900+300x+25x2)==−35x2+280x−900,x≥0 Marginal profit
Marginal profit=P′(x)==(−35x2+280x−900)′=−70x+280
P′(x)=0=>−70x+280=0=>x=4If 0≤x<4, then P′(x)>0,P(x) increases.
If x>4, then P′(x)<0,P(x) decreases.
P(4)=−35(4)2+280(4)−900=−340 The function P(x) is the local maximum with value of −340 at x=4.
Since the function P(x) has the only extremum, then the profit function has the absolute maximum with value of −340 at x=4.
Comments
The answer has been published.
if the above answers could be emailed to me. Thank you