Question #110065

∫²∫1sinx dx


1
Expert's answer
2020-04-27T20:06:22-0400

0201sinxdxdy=02[cosx]01dy=02(cos1+cos0)dy=02(1cos1)dy\smallint_0^2 \smallint_0^1 sin x dxdy = \smallint_0^2 [-cos x]^1_0 dy = \smallint_0^2(-cos 1+cos0)dy= \smallint_0^2(1-cos1)dy

=(1cos1)02dy=(1cos1)[y]02=2(1cos1)=2(10.54)=2(0.46)=0.92= (1-cos1)\smallint_0^2dy = (1-cos1)[y]^2_0 = 2(1-cos1)=2(1-0.54)= 2(0.46)=0.92


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS