∫²∫1sinx dx
∫02∫01sinxdxdy=∫02[−cosx]01dy=∫02(−cos1+cos0)dy=∫02(1−cos1)dy\smallint_0^2 \smallint_0^1 sin x dxdy = \smallint_0^2 [-cos x]^1_0 dy = \smallint_0^2(-cos 1+cos0)dy= \smallint_0^2(1-cos1)dy∫02∫01sinxdxdy=∫02[−cosx]01dy=∫02(−cos1+cos0)dy=∫02(1−cos1)dy
=(1−cos1)∫02dy=(1−cos1)[y]02=2(1−cos1)=2(1−0.54)=2(0.46)=0.92= (1-cos1)\smallint_0^2dy = (1-cos1)[y]^2_0 = 2(1-cos1)=2(1-0.54)= 2(0.46)=0.92=(1−cos1)∫02dy=(1−cos1)[y]02=2(1−cos1)=2(1−0.54)=2(0.46)=0.92
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments