y=2x3−9x2−60x+150y′=6x2−18x−606x2−18x−60=0x2−3x−10=0y=2x^3-9x^2-60x+150\\ y'=6x^2-18x-60\\ 6x^2-18x-60=0\\ x^2-3x-10=0y=2x3−9x2−60x+150y′=6x2−18x−606x2−18x−60=0x2−3x−10=0
According to Viet's theorem,
x1+x2=3x1x2=−10x1=5x2=−2x_1+x_2=3\\ x_1x_2=-10\\ x_1=5\\ x_2=-2x1+x2=3x1x2=−10x1=5x2=−2
x∈(−∞,−2),y′>0,x∈(−2,5),y′<0,x∈(5,∞),y′>0.x\in(-\infty,-2), y'>0,\\ x\in(-2,5), y'<0,\\ x\in(5,\infty), y'>0.x∈(−∞,−2),y′>0,x∈(−2,5),y′<0,x∈(5,∞),y′>0.
Then
x=−2x=-2x=−2 is a local maximum, ymax=218y_{max}=218ymax=218 ;
x=5x=5x=5 is a local minimum, ymin=−125y_{min}=-125ymin=−125 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments