Definition. If we define
dn=x∈Esup∣fn(x)−f(x)∣
then fn converges to f uniformly if and only if dn→0 as n→∞ .
( More information: https://en.wikipedia.org/wiki/Uniform_convergence )
In our case,
1 STEP:
n→∞limfn(x)=n→∞lim(x+2nn)=21 2 STEP:
∣∣x+2nn−21∣∣=∣∣2(x+2n)2n−(x+2n)∣∣=∣∣2(x+2n)−x∣∣=2(x+2n)x 3 STEP: we must find sup for the expression above on the interval x∈[0;k],∀k>0.
To do this, we will look at the expression above as a certain function y(x) and use the derivative.
y′(x)=dxd(2(x+2n)x)=(2(x+2n))21⋅(2(x+2n))−x⋅2==4(x+2n)24n=(x+2n)2n>0,∀x∈[0;k],∀n∈N. Then,
dn=x∈[0;k]supy(x)=x∈[0;k]sup2(x+2n)x=2(k+2n)k 3 STEP:
n→∞limdn=n→∞lim2(k+2n)k=0 Conclusion,
fn(x)=x+2nx⇉21 (the sequence is uniformly convergent).
Comments