Question #103897
Show that the sequence {fn}of functions, where

fn (x )=n/(x+2n)
is uniformly
convergent in [0.k] where k > 0.
1
Expert's answer
2020-03-04T18:12:30-0500

Definition. If we define


dn=supxEfn(x)f(x)d_n=\sup\limits_{x\in E}|f_n(x)-f(x)|


then fnf_n converges to ff  uniformly if and only if dn0{\displaystyle d_{n}\to 0}  as n{\displaystyle n\to \infty } .

( More information: https://en.wikipedia.org/wiki/Uniform_convergence )

In our case,

1 STEP:


limnfn(x)=limn(nx+2n)=12\lim\limits_{n\to\infty}f_n(x)=\lim\limits_{n\to\infty}\left(\frac{n}{x+2n}\right)=\frac{1}{2}

2 STEP:


nx+2n12=2n(x+2n)2(x+2n)=x2(x+2n)=x2(x+2n)\left|\frac{n}{x+2n}-\frac{1}{2}\right|=\left|\frac{2n-(x+2n)}{2(x+2n)}\right|=\left|\frac{-x}{2(x+2n)}\right|=\\[0.5cm] \frac{x}{2(x+2n)}

3 STEP: we must find supsup for the expression above on the interval x[0;k],k>0x\in[0;k], \forall k>0.

To do this, we will look at the expression above as a certain function y(x)y(x) and use the derivative.


y(x)=ddx(x2(x+2n))=1(2(x+2n))x2(2(x+2n))2==4n4(x+2n)2=n(x+2n)2>0,x[0;k],nN.y'(x)=\frac{d}{dx}\left(\frac{x}{2(x+2n)}\right)=\frac{1\cdot(2(x+2n))-x\cdot2}{(2(x+2n))^2}=\\[0.5cm] =\frac{4n}{4(x+2n)^2}=\frac{n}{(x+2n)^2}>0, \forall x\in[0;k],\forall n\in\mathbb{N}.

Then,


dn=supx[0;k]y(x)=supx[0;k]x2(x+2n)=k2(k+2n)d_n=\sup\limits_{x\in[0;k]}y(x)=\sup\limits_{x\in[0;k]}\frac{x}{2(x+2n)}=\frac{k}{2(k+2n)}

3 STEP:


limndn=limnk2(k+2n)=0\lim\limits_{n\to\infty}d_n=\lim\limits_{n\to\infty}\frac{k}{2(k+2n)}=0

Conclusion,


fn(x)=xx+2n12\boxed{f_n(x)=\frac{x}{x+2n}\rightrightarrows\frac{1}{2}}

(the sequence is uniformly convergent).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS