Definition. If we define
"d_n=\\sup\\limits_{x\\in E}|f_n(x)-f(x)|"
then "f_n" converges to "f" uniformly if and only if "{\\displaystyle d_{n}\\to 0}" as "{\\displaystyle n\\to \\infty }" .
( More information: https://en.wikipedia.org/wiki/Uniform_convergence )
In our case,
1 STEP:
"\\lim\\limits_{n\\to\\infty}f_n(x)=\\lim\\limits_{n\\to\\infty}\\left(\\frac{n}{x+2n}\\right)=\\frac{1}{2}" 2 STEP:
"\\left|\\frac{n}{x+2n}-\\frac{1}{2}\\right|=\\left|\\frac{2n-(x+2n)}{2(x+2n)}\\right|=\\left|\\frac{-x}{2(x+2n)}\\right|=\\\\[0.5cm]\n\\frac{x}{2(x+2n)}" 3 STEP: we must find "sup" for the expression above on the interval "x\\in[0;k], \\forall k>0".
To do this, we will look at the expression above as a certain function "y(x)" and use the derivative.
"y'(x)=\\frac{d}{dx}\\left(\\frac{x}{2(x+2n)}\\right)=\\frac{1\\cdot(2(x+2n))-x\\cdot2}{(2(x+2n))^2}=\\\\[0.5cm]\n=\\frac{4n}{4(x+2n)^2}=\\frac{n}{(x+2n)^2}>0, \\forall x\\in[0;k],\\forall n\\in\\mathbb{N}." Then,
"d_n=\\sup\\limits_{x\\in[0;k]}y(x)=\\sup\\limits_{x\\in[0;k]}\\frac{x}{2(x+2n)}=\\frac{k}{2(k+2n)}" 3 STEP:
"\\lim\\limits_{n\\to\\infty}d_n=\\lim\\limits_{n\\to\\infty}\\frac{k}{2(k+2n)}=0" Conclusion,
"\\boxed{f_n(x)=\\frac{x}{x+2n}\\rightrightarrows\\frac{1}{2}}" (the sequence is uniformly convergent).
Comments
Leave a comment