"x-\\frac{x^2}{2}\\leq\\log (1+x)\\leq x-\\frac{x^2}{2(1+x)}, \\ \\ \\quad \\forall \\ x\\geq0"
Proof:
Lagrange's Mean Value Theorem:
Let "f: [a,b]\\rightarrow \\mathbb{R}" be a continuous function, differentiable on the open interval "(a,b)" . Then there exists some "c\\in(a,b) \\" such that "f^\\prime(c)=\\frac{f(b)-f(a)}{b-a}" .
"f(x)=\\log(1+x)+\\frac{x^2}{2}"
This function is continuous in "[0,b]" , differentiable in "(0,b)," for all "b\\geq0."
Using Lagrange’s Mean Value Theorem for function "f(x)", we have:
"\\exists c\\in (0,b): \\ \\frac{f(b)-f(0)}{b-0}=f^\\prime(c)"
"\\frac{f(b)-f(0)}{b-0}= \\frac{(\\log(1+b)+\\frac{b^2}{2})-(\\log(1)+0)}{b}= \\frac{\\log(1+b)+\\frac{b^2}{2}}{b}=f^\\prime(c)=\\frac{1}{1+c}+c"
"\\frac{\\log(1+b)+\\frac{b^2}{2}}{b}=\\frac{1}{1+c}+c=1+\\frac{c^2}{1+c}\\geq1 \\Rightarrow \\frac{\\log(1+b)+\\frac{b^2}{2}}{b}\\geq1 \\Rightarrow \\log(1+b)+\\frac{b^2}{2}\\geq b"
"\\Rightarrow \\log(1+b)\\geq b-\\frac{b^2}{2}, \\forall b\\geq0"
So, "x-\\frac{x^2}{2}\\leq\\log (1+x), \\ \\ \\forall \\ x\\geq 0"
"f(x)=\\log(1+x) +\\frac{x^2}{2(1+x)}"
This function is continuous in "[0,b]" , differentiable in "(a,b)" for all "b\\geq 0."
Using Lagrange’s Mean Value Theorem for function "f(x)" , we have:
"\\exists c\\in (0,b): \\ \\frac{f(b)-f(0)}{b-0}=f^\\prime(c)"
"\\frac{f(b)-f(0)}{b-0}= \\frac{(\\log(1+b)+\\frac{b^2}{2(1+b)})-(\\log(1)+0)}{b}= \\frac{\\log(1+b)+\\frac{b^2}{2(1+b)}}{b}=f^\\prime(c)="
"=\\frac{1}{1+c}+\\frac{2c\\times 2(1+c)-2c^2}{4(1+c)^2}=\\frac{2c^2+8c+4}{4c^2+8c+4}=1-\\frac{2c^2}{4c^2+8c+4} \\leq 1"
"\\frac{\\log(1+b)+\\frac{b^2}{2(1+b)}}{b}\\leq 1\\Rightarrow {\\log(1+b)+\\frac{b^2}{2(1+b)}}\\leq b \n\\Rightarrow {\\log(1+b)\\leq b- \\frac{b^2}{2(1+b)}}, \\ \\forall b\\geq 0"
So, "\\log (1+x)\\leq x-\\frac{x^2}{2(1+x)}, \\ \\ \\quad \\forall \\ x\\geq0"
Comments
Leave a comment