x−2x2≤log(1+x)≤x−2(1+x)x2, ∀ x≥0
Proof:
Lagrange's Mean Value Theorem:
Let f:[a,b]→R be a continuous function, differentiable on the open interval (a,b) . Then there exists some c\in(a,b) \ such that f′(c)=b−af(b)−f(a) .
f(x)=log(1+x)+2x2
This function is continuous in [0,b] , differentiable in (0,b), for all b≥0.
Using Lagrange’s Mean Value Theorem for function f(x), we have:
∃c∈(0,b): b−0f(b)−f(0)=f′(c)
b−0f(b)−f(0)=b(log(1+b)+2b2)−(log(1)+0)=blog(1+b)+2b2=f′(c)=1+c1+c
blog(1+b)+2b2=1+c1+c=1+1+cc2≥1⇒blog(1+b)+2b2≥1⇒log(1+b)+2b2≥b
⇒log(1+b)≥b−2b2,∀b≥0
So, x−2x2≤log(1+x), ∀ x≥0
f(x)=log(1+x)+2(1+x)x2
This function is continuous in [0,b] , differentiable in (a,b) for all b≥0.
Using Lagrange’s Mean Value Theorem for function f(x) , we have:
∃c∈(0,b): b−0f(b)−f(0)=f′(c)
b−0f(b)−f(0)=b(log(1+b)+2(1+b)b2)−(log(1)+0)=blog(1+b)+2(1+b)b2=f′(c)=
=1+c1+4(1+c)22c×2(1+c)−2c2=4c2+8c+42c2+8c+4=1−4c2+8c+42c2≤1
blog(1+b)+2(1+b)b2≤1⇒log(1+b)+2(1+b)b2≤b⇒log(1+b)≤b−2(1+b)b2, ∀b≥0
So, log(1+x)≤x−2(1+x)x2, ∀ x≥0
Comments