Question #103882
Use Lagrange’s mean value theorem to prove that


x-x^2/2《log(1+x)《x-x^2/2(1+x) if x》0.
1
Expert's answer
2020-03-02T16:33:54-0500

xx22log(1+x)xx22(1+x),   x0x-\frac{x^2}{2}\leq\log (1+x)\leq x-\frac{x^2}{2(1+x)}, \ \ \quad \forall \ x\geq0

Proof:

Lagrange's Mean Value Theorem:

Let f:[a,b]Rf: [a,b]\rightarrow \mathbb{R} be a continuous function, differentiable on the open interval (a,b)(a,b)  . Then there exists some  c\in(a,b) \ such that f(c)=f(b)f(a)baf^\prime(c)=\frac{f(b)-f(a)}{b-a} .



f(x)=log(1+x)+x22f(x)=\log(1+x)+\frac{x^2}{2}

This function is continuous in [0,b][0,b] , differentiable in (0,b),(0,b), for all b0.b\geq0.

Using Lagrange’s Mean Value Theorem for function f(x)f(x), we have:

c(0,b): f(b)f(0)b0=f(c)\exists c\in (0,b): \ \frac{f(b)-f(0)}{b-0}=f^\prime(c)

f(b)f(0)b0=(log(1+b)+b22)(log(1)+0)b=log(1+b)+b22b=f(c)=11+c+c\frac{f(b)-f(0)}{b-0}= \frac{(\log(1+b)+\frac{b^2}{2})-(\log(1)+0)}{b}= \frac{\log(1+b)+\frac{b^2}{2}}{b}=f^\prime(c)=\frac{1}{1+c}+c

log(1+b)+b22b=11+c+c=1+c21+c1log(1+b)+b22b1log(1+b)+b22b\frac{\log(1+b)+\frac{b^2}{2}}{b}=\frac{1}{1+c}+c=1+\frac{c^2}{1+c}\geq1 \Rightarrow \frac{\log(1+b)+\frac{b^2}{2}}{b}\geq1 \Rightarrow \log(1+b)+\frac{b^2}{2}\geq b

log(1+b)bb22,b0\Rightarrow \log(1+b)\geq b-\frac{b^2}{2}, \forall b\geq0


So, xx22log(1+x),   x0x-\frac{x^2}{2}\leq\log (1+x), \ \ \forall \ x\geq 0


f(x)=log(1+x)+x22(1+x)f(x)=\log(1+x) +\frac{x^2}{2(1+x)}

This function is continuous in [0,b][0,b] , differentiable in (a,b)(a,b) for all b0.b\geq 0.

Using Lagrange’s Mean Value Theorem for function f(x)f(x) , we have:

c(0,b): f(b)f(0)b0=f(c)\exists c\in (0,b): \ \frac{f(b)-f(0)}{b-0}=f^\prime(c)

f(b)f(0)b0=(log(1+b)+b22(1+b))(log(1)+0)b=log(1+b)+b22(1+b)b=f(c)=\frac{f(b)-f(0)}{b-0}= \frac{(\log(1+b)+\frac{b^2}{2(1+b)})-(\log(1)+0)}{b}= \frac{\log(1+b)+\frac{b^2}{2(1+b)}}{b}=f^\prime(c)=

=11+c+2c×2(1+c)2c24(1+c)2=2c2+8c+44c2+8c+4=12c24c2+8c+41=\frac{1}{1+c}+\frac{2c\times 2(1+c)-2c^2}{4(1+c)^2}=\frac{2c^2+8c+4}{4c^2+8c+4}=1-\frac{2c^2}{4c^2+8c+4} \leq 1

log(1+b)+b22(1+b)b1log(1+b)+b22(1+b)blog(1+b)bb22(1+b), b0\frac{\log(1+b)+\frac{b^2}{2(1+b)}}{b}\leq 1\Rightarrow {\log(1+b)+\frac{b^2}{2(1+b)}}\leq b \Rightarrow {\log(1+b)\leq b- \frac{b^2}{2(1+b)}}, \ \forall b\geq 0


So, log(1+x)xx22(1+x),   x0\log (1+x)\leq x-\frac{x^2}{2(1+x)}, \ \ \quad \forall \ x\geq0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS