limk→∞((1−1/(k+1))k+1/(1−1/k)k)lim _{k\to \infty}((1-1/(k+1))^{k+1}/(1-1/k)^k)limk→∞((1−1/(k+1))k+1/(1−1/k)k)
limk→∞((k/(k+1))k+1/((k−1)/k)k)lim _{k\to \infty}((k/(k+1))^{k+1}/((k-1)/k)^k)limk→∞((k/(k+1))k+1/((k−1)/k)k)
limk→∞((k2/(k2−1))k)lim _{k\to \infty}((k^2/(k^2-1))^{k})limk→∞((k2/(k2−1))k)
limk→∞((1/(1−1/k2))k)lim _{k\to \infty}((1/(1-1/k^2))^{k})limk→∞((1/(1−1/k2))k) is of the form 1∞1^{\infty}1∞
elimk→∞(((k2/(k2−1))−1)k)e^{lim _{k\to \infty}(((k^2/(k^2-1))-1)k)}elimk→∞(((k2/(k2−1))−1)k)
elimk→∞(k/(k2−1))e^{lim_{k \to \infty}(k/(k^2-1))}elimk→∞(k/(k2−1))
e0=1e^0=1e0=1
Root test fails as limit value is equal to 1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments