Show that the points (-2,0), (2,3) and (5,-1) are the vertices of a right triangle. And find its area
"A(-2,0), B(2,3), C(5, -1)"
"\\overrightarrow{BA}=\\langle-2-2, 0-3\\rangle=\\langle-4, -3\\rangle""\\overrightarrow{BC}=\\langle5-2, -1-3\\rangle=\\langle3, -4\\rangle"
"\\overrightarrow{BA}\\cdot\\overrightarrow{BC}=-4(3)+(-3)(-4)=0"
Then "\\overrightarrow{BA}\\perp\\overrightarrow{BC}," and we see that the triangle "ABC" with vertices "A(-2,0), B(2,3), C(5, -1)" is a right triangle.
"|\\overrightarrow{BC}|=\\sqrt{(3)^2+(-4)^2}=5"
"Area_{ABC}=\\dfrac{1}{2}|\\overrightarrow{BA}||\\overrightarrow{BA}|"
"=\\dfrac{1}{2}(5)(5)=12.5({units}^2)"
Comments
Leave a comment