Determine the value of 𝑎 so that 𝑨 = 2𝒊 − 𝑎𝒋 + 𝒌 and 𝑩 = 4𝒊 − 2𝒋 − 2𝒌 are perpendicular.
A=(2,−a,1)A=(2,-a,1)A=(2,−a,1), B=(4,−2,−2)B=(4,-2,-2)B=(4,−2,−2).
Two vectors are perpendicular iff A⋅B=0A\cdot B=0A⋅B=0.
A⋅B=2⋅4+(−a)⋅(−2)+1⋅(−2)=8+4a−2=4a+6A\cdot B=2\cdot4 + (-a)\cdot(-2) + 1\cdot(-2)=8+4a-2=4a+6A⋅B=2⋅4+(−a)⋅(−2)+1⋅(−2)=8+4a−2=4a+6.
4a+6=04a+6=04a+6=0, so a=−32a=-\frac32a=−23.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments