Question #349053



Question text


An aeroplane flies at a ground velocity (i.e. velocity relative to



the ground) of 300 km/h N 30o W, in a wind blowing at a velocity



of 50 km/h N 20o E. What is the velocity (speed and direction)



of the plane relative to the ground? (Use a calculator and round the speed



to the nearest km/h, and the corresponding angle to the nearest degree.)


1
Expert's answer
2022-06-09T14:05:38-0400

a.


v=300cos120°i+300sin120°j\vec{v}=300\cos120\degree \vec{i}+300\sin120\degree\vec{j}

u=50cos70°i+50sin70°j\vec{u}=50\cos70\degree \vec{i}+50\sin70\degree\vec{j}


vres=v+u\vec{v}_{res}=\vec{v}+\vec{u}


=(300cos120°+50cos70°)i=(300\cos120\degree+50\cos70\degree )\vec{i}



+(300sin120°+50sin70°)j+(300\sin120\degree+50\sin70\degree)\vec{j}

132.9i+306.8j\approx-132.9\vec{i}+306.8\vec{j}


vres(132.9)2+(306.8)2334.35(km/h)|\vec{v}_{res}|\approx\sqrt{(-132.9)^2+(306.8)^2}\approx334.35(km/h)



b.


tanθ=306.8132.9=2.3085\tan \theta=\dfrac{306.8}{-132.9}=-2.3085




θ=tan1(2.3085)+180°113.42°\theta=\tan^{-1}(-2.3085)+180\degree\approx113.42\degree



An aeroplane travels in the direction N 23.42°23.42\degreeW at 334.35334.35 km/h.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS