Question #347867

Prove that |a+b| - |a-b| ≤ 2|b|.


1
Expert's answer
2022-06-08T17:39:58-0400

Consider paralelogram ABCDABCD

AB=a,AD=b\overrightarrow{AB}=\vec a, \overrightarrow{AD}=\vec b

Then


AO=12(a+b),DO=12(ab)\overrightarrow{AO}=\dfrac{1}{2}(\vec{a}+\vec {b}), \overrightarrow{DO}=\dfrac{1}{2}(\vec{a}-\vec {b})

The sum of any two sides of a triangle is greater than or equal to the third side.


AOD:AD+ODAO\triangle AOD:AD+OD\ge AO

Then


b12(a+b)12(ab)|\vec{b}|\ge |\dfrac{1}{2}(\vec{a}+\vec {b})|-|\dfrac{1}{2}(\vec{a}-\vec {b})|

a+bab2b|\vec{a}+\vec {b}|-|\vec{a}-\vec {b}|\le 2|\vec{b}|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS