Question #347724

Given z1=2<45degrees, z2=3<120degrees, z3=4<180degrees. Determine the following:

a) (z1)^2+z2/z2+z3

b) z1/z2*z3


1
Expert's answer
2022-06-05T10:15:31-0400

(a)


(z1)2=(2)2(245°)=4i(z_1)^2=(2)^2\angle(2\cdot45\degree)=4iz2+z3=3(12+32i)4=112332i)z_2+z_3=3(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)-4=-\dfrac{11}{2}-\dfrac{3\sqrt{3}}{2}i)z2z2+z3=3+33i1133i\dfrac{z_2}{z_2+z_3}=\dfrac{-3+3\sqrt{3}i}{-11-3\sqrt{3}i}=(3+33i)(1133i)121+27=\dfrac{(-3+3\sqrt{3}i)(-11-3\sqrt{3}i)}{121+27}=33+93i333i+27148=\dfrac{33+9\sqrt{3}i-33\sqrt{3}i+27}{148}=15376337i=\dfrac{15}{37}-\dfrac{6\sqrt{3}}{37}i(z1)2+z2z2+z3=4i+15376337i(z_1)^2+\dfrac{z_2}{z_2+z_3}=4i+\dfrac{15}{37}-\dfrac{6\sqrt{3}}{37}i=1537+1486337i=\dfrac{15}{37}+\dfrac{148-6\sqrt{3}}{37}i

(b)



z2z3=3(4)(120°+180°)=663iz_2z_3=3(4)\angle(120\degree+180\degree)=6-6\sqrt{3}iz1z2z3=2+2i663i\dfrac{z_1}{z_2z_3}=\dfrac{\sqrt{2}+\sqrt{2}i}{6-6\sqrt{3}i}=(2+2i)(6+63i)36+108=\dfrac{(\sqrt{2}+\sqrt{2}i)(6+6\sqrt{3}i)}{36+108}=62+66i+62i66144=\dfrac{6\sqrt{2}+6\sqrt{6}i+6\sqrt{2}i-6\sqrt{6}}{144}=6224+6+224i=-\dfrac{\sqrt{6}-\sqrt{2}}{24}+\dfrac{\sqrt{6}+\sqrt{2}}{24}i

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS