Answer to Question #347724 in Analytic Geometry for Merryza

Question #347724

Given z1=2<45degrees, z2=3<120degrees, z3=4<180degrees. Determine the following:

a) (z1)^2+z2/z2+z3

b) z1/z2*z3


1
Expert's answer
2022-06-05T10:15:31-0400

(a)


"(z_1)^2=(2)^2\\angle(2\\cdot45\\degree)=4i""z_2+z_3=3(-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i)-4=-\\dfrac{11}{2}-\\dfrac{3\\sqrt{3}}{2}i)""\\dfrac{z_2}{z_2+z_3}=\\dfrac{-3+3\\sqrt{3}i}{-11-3\\sqrt{3}i}""=\\dfrac{(-3+3\\sqrt{3}i)(-11-3\\sqrt{3}i)}{121+27}""=\\dfrac{33+9\\sqrt{3}i-33\\sqrt{3}i+27}{148}""=\\dfrac{15}{37}-\\dfrac{6\\sqrt{3}}{37}i""(z_1)^2+\\dfrac{z_2}{z_2+z_3}=4i+\\dfrac{15}{37}-\\dfrac{6\\sqrt{3}}{37}i""=\\dfrac{15}{37}+\\dfrac{148-6\\sqrt{3}}{37}i"

(b)



"z_2z_3=3(4)\\angle(120\\degree+180\\degree)=6-6\\sqrt{3}i""\\dfrac{z_1}{z_2z_3}=\\dfrac{\\sqrt{2}+\\sqrt{2}i}{6-6\\sqrt{3}i}""=\\dfrac{(\\sqrt{2}+\\sqrt{2}i)(6+6\\sqrt{3}i)}{36+108}""=\\dfrac{6\\sqrt{2}+6\\sqrt{6}i+6\\sqrt{2}i-6\\sqrt{6}}{144}""=-\\dfrac{\\sqrt{6}-\\sqrt{2}}{24}+\\dfrac{\\sqrt{6}+\\sqrt{2}}{24}i"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog