3 a + 5 b + 2 c = 4 3a+5b+2c=4 3 a + 5 b + 2 c = 4
− 4 a + 3 b + 7 c = 3 -4a+3b+7c=3 − 4 a + 3 b + 7 c = 3
3 a − 6 b + 3 c = 5 3a-6b+3c=5 3 a − 6 b + 3 c = 5
A = ( 3 5 2 4 − 4 3 7 3 3 − 6 3 5 ) A=\begin{pmatrix}
3 & 5 & 2 & & 4 \\
-4 & 3 & 7 & & 3 \\
3 & -6 & 3 & & 5 \\
\end{pmatrix} A = ⎝ ⎛ 3 − 4 3 5 3 − 6 2 7 3 4 3 5 ⎠ ⎞ R 1 = R 1 / 3 R_1=R_1/3 R 1 = R 1 /3
( 1 5 / 3 2 / 3 4 / 3 − 4 3 7 3 3 − 6 3 5 ) \begin{pmatrix}
1 & 5/3 & 2/3 & & 4/3 \\
-4 & 3 & 7 & & 3 \\
3 & -6 & 3 & & 5 \\
\end{pmatrix} ⎝ ⎛ 1 − 4 3 5/3 3 − 6 2/3 7 3 4/3 3 5 ⎠ ⎞ R 2 = R 2 + 4 R 1 R_2=R_2+4R_1 R 2 = R 2 + 4 R 1
( 1 5 / 3 2 / 3 4 / 3 0 29 / 3 29 / 3 25 / 3 3 − 6 3 5 ) \begin{pmatrix}
1 & 5/3 & 2/3 & & 4/3 \\
0 & 29/3 & 29/3 & & 25/3 \\
3 & -6 & 3 & & 5 \\
\end{pmatrix} ⎝ ⎛ 1 0 3 5/3 29/3 − 6 2/3 29/3 3 4/3 25/3 5 ⎠ ⎞ R 3 = R 3 − 3 R 1 R_3=R_3-3R_1 R 3 = R 3 − 3 R 1
( 1 5 / 3 2 / 3 4 / 3 0 29 / 3 29 / 3 25 / 3 0 − 11 1 1 ) \begin{pmatrix}
1 & 5/3 & 2/3 & & 4/3 \\
0 & 29/3 & 29/3 & & 25/3 \\
0 & -11 & 1 & & 1 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 5/3 29/3 − 11 2/3 29/3 1 4/3 25/3 1 ⎠ ⎞ R 2 = 3 R 2 / 29 R_2=3R_2/29 R 2 = 3 R 2 /29
( 1 5 / 3 2 / 3 4 / 3 0 1 1 25 / 29 0 − 11 1 1 ) \begin{pmatrix}
1 & 5/3 & 2/3 & & 4/3 \\
0 & 1 & 1 & & 25/29 \\
0 & -11 & 1 & & 1 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 5/3 1 − 11 2/3 1 1 4/3 25/29 1 ⎠ ⎞ R 1 = R 1 − 5 R 2 / 3 R_1=R_1-5R_2/3 R 1 = R 1 − 5 R 2 /3
( 1 0 − 1 − 3 / 29 0 1 1 25 / 29 0 − 11 1 1 ) \begin{pmatrix}
1 & 0 & -1 & & -3/29 \\
0 & 1 & 1 & & 25/29 \\
0 & -11 & 1 & & 1 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 − 11 − 1 1 1 − 3/29 25/29 1 ⎠ ⎞ R 3 = R 3 + 11 R 2 R_3=R_3+11R_2 R 3 = R 3 + 11 R 2
( 1 0 − 1 − 3 / 29 0 1 1 25 / 29 0 0 12 304 / 29 ) \begin{pmatrix}
1 & 0 & -1 & & -3/29 \\
0 & 1 & 1 & & 25/29 \\
0 & 0 & 12 & & 304/29 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 1 12 − 3/29 25/29 304/29 ⎠ ⎞ R 3 = R 3 / 12 R_3=R_3/12 R 3 = R 3 /12
( 1 0 − 1 − 3 / 29 0 1 1 25 / 29 0 0 1 76 / 87 ) \begin{pmatrix}
1 & 0 & -1 & & -3/29 \\
0 & 1 & 1 & & 25/29 \\
0 & 0 & 1 & & 76/87 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 1 1 − 3/29 25/29 76/87 ⎠ ⎞ R 1 = R 1 + R 3 R_1=R_1+R_3 R 1 = R 1 + R 3
( 1 0 0 67 / 87 0 1 1 25 / 29 0 0 1 76 / 87 ) \begin{pmatrix}
1 & 0 & 0 & & 67/87 \\
0 & 1 & 1 & & 25/29 \\
0 & 0 & 1 & & 76/87 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 1 1 67/87 25/29 76/87 ⎠ ⎞ R 2 = R 2 − R 3 R_2=R_2-R_3 R 2 = R 2 − R 3
( 1 0 0 67 / 87 0 1 0 − 1 / 87 0 0 1 76 / 87 ) \begin{pmatrix}
1 & 0 & 0 & & 67/87 \\
0 & 1 & 0 & & -1/87 \\
0 & 0 & 1 & & 76/87 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 67/87 − 1/87 76/87 ⎠ ⎞
a = 67 87 , b = − 1 87 , c = 76 87 a=\dfrac{67}{87}, b=-\dfrac{1}{87}, c=\dfrac{76}{87} a = 87 67 , b = − 87 1 , c = 87 76
Comments