Question #347216

Given r1 = 3i − 4j + 3k, r2 = 5i + 3j − 6k, r3 = 2i + 7j + 3k and r4 = 4i + 3j + 5k.





Find the scalars a, b and c such that r4 = ar1 + br2 + cr3







1
Expert's answer
2022-06-03T12:34:14-0400
3a+5b+2c=43a+5b+2c=4

4a+3b+7c=3-4a+3b+7c=3

3a6b+3c=53a-6b+3c=5

A=(352443733635)A=\begin{pmatrix} 3 & 5 & 2 & & 4 \\ -4 & 3 & 7 & & 3 \\ 3 & -6 & 3 & & 5 \\ \end{pmatrix}

R1=R1/3R_1=R_1/3


(15/32/34/343733635)\begin{pmatrix} 1 & 5/3 & 2/3 & & 4/3 \\ -4 & 3 & 7 & & 3 \\ 3 & -6 & 3 & & 5 \\ \end{pmatrix}

R2=R2+4R1R_2=R_2+4R_1


(15/32/34/3029/329/325/33635)\begin{pmatrix} 1 & 5/3 & 2/3 & & 4/3 \\ 0 & 29/3 & 29/3 & & 25/3 \\ 3 & -6 & 3 & & 5 \\ \end{pmatrix}

R3=R33R1R_3=R_3-3R_1


(15/32/34/3029/329/325/301111)\begin{pmatrix} 1 & 5/3 & 2/3 & & 4/3 \\ 0 & 29/3 & 29/3 & & 25/3 \\ 0 & -11 & 1 & & 1 \\ \end{pmatrix}

R2=3R2/29R_2=3R_2/29


(15/32/34/301125/2901111)\begin{pmatrix} 1 & 5/3 & 2/3 & & 4/3 \\ 0 & 1 & 1 & & 25/29 \\ 0 & -11 & 1 & & 1 \\ \end{pmatrix}

R1=R15R2/3R_1=R_1-5R_2/3


(1013/2901125/2901111)\begin{pmatrix} 1 & 0 & -1 & & -3/29 \\ 0 & 1 & 1 & & 25/29 \\ 0 & -11 & 1 & & 1 \\ \end{pmatrix}

R3=R3+11R2R_3=R_3+11R_2


(1013/2901125/290012304/29)\begin{pmatrix} 1 & 0 & -1 & & -3/29 \\ 0 & 1 & 1 & & 25/29 \\ 0 & 0 & 12 & & 304/29 \\ \end{pmatrix}

R3=R3/12R_3=R_3/12


(1013/2901125/2900176/87)\begin{pmatrix} 1 & 0 & -1 & & -3/29 \\ 0 & 1 & 1 & & 25/29 \\ 0 & 0 & 1 & & 76/87 \\ \end{pmatrix}

R1=R1+R3R_1=R_1+R_3


(10067/8701125/2900176/87)\begin{pmatrix} 1 & 0 & 0 & & 67/87 \\ 0 & 1 & 1 & & 25/29 \\ 0 & 0 & 1 & & 76/87 \\ \end{pmatrix}

R2=R2R3R_2=R_2-R_3


(10067/870101/8700176/87)\begin{pmatrix} 1 & 0 & 0 & & 67/87 \\ 0 & 1 & 0 & & -1/87 \\ 0 & 0 & 1 & & 76/87 \\ \end{pmatrix}


a=6787,b=187,c=7687a=\dfrac{67}{87}, b=-\dfrac{1}{87}, c=\dfrac{76}{87}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS