Consider the conic represented by 4(x²+2y)=9. Now shift the origin to (1,-1) and then rotate the axes through π/3 What is the resultant equation? What geometrical object does it represent?
"4(x^2+2y)=9\\implies y=\\frac{9}{8}-\\frac{1}{2}x^2" , hence the conic is a parabola.
Let "(x_1,y_1)" be the new coordinates of point "(x,y)" after the shift of the origin and let "(x_2,y_2)" be the new coordinates of "(x_1,y_1)" after the rotation, then
"x=x_1+1"
"y=y_1-1"
"x_1=x_2cos(\\pi\/3)-y_2sin(\\pi\/3)=\\frac{1}{2}x_2-\\frac{\\sqrt{3}}{2}y_2"
"y_1=x_2sin(\\pi\/3)+y_2cos(\\pi\/3)=\\frac{\\sqrt{3}}{2}x_2+\\frac{1}{2}y_2"
hence
"x=\\frac{1}{2}x_2-\\frac{\\sqrt{3}}{2}y_2+1"
"y=\\frac{\\sqrt{3}}{2}x_2+\\frac{1}{2}y_2-1"
substituting the last two equations into the original equation:
"4((\\frac{1}{2}x_2-\\frac{\\sqrt{3}}{2}y_2+1)^2+2(\\frac{\\sqrt{3}}{2}x_2+\\frac{1}{2}y_2-1))=9,"
"(x_2-\\sqrt{3}y_2+2)^2+4\\sqrt{3}x_2+4y_2-8=9,"
"x_2^2+3y_2^2+4-2\\sqrt{3}x_2y_2+4x_2-4\\sqrt{3}y_2+\\\\\n4\\sqrt{3}x_2+4y_2-8=9,"
"x_2^2+3y_2^2-2\\sqrt{3}x_2y_2+4(1+\\sqrt{3})x_2+\\\\4(1-\\sqrt{3})y_2=13."
Comments
Leave a comment