( u − 2 v ) = ( 2 , − 3 , 4 ) − 2 ⋅ ( − 1 , 2 , 0 ) = ( 4 , − 7 , 4 ) (u-2v) = (2,-3,4) - 2\cdot(-1,2,0) = (4,-7,4) ( u − 2 v ) = ( 2 , − 3 , 4 ) − 2 ⋅ ( − 1 , 2 , 0 ) = ( 4 , − 7 , 4 )
( u + 2 w ) = ( 2 , − 3 , 4 ) + 2 ⋅ ( 5 , − 1 , 2 ) = ( 12 , − 5 , 8 ) (u+2w) = (2,-3,4) + 2\cdot(5,-1,2) = (12, -5, 8) ( u + 2 w ) = ( 2 , − 3 , 4 ) + 2 ⋅ ( 5 , − 1 , 2 ) = ( 12 , − 5 , 8 )
The angle α \alpha α between two vectors a ⃗ \vec{a} a and b ⃗ \vec{b} b can be obtained as cos α = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ . \cos\alpha = \dfrac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}. cos α = ∣ a ∣∣ b ∣ a ⋅ b .
cos α = 4 ⋅ 12 + ( − 7 ) ⋅ ( − 5 ) + 4 ⋅ 8 4 2 + ( − 7 ) 2 + 4 2 1 2 2 + ( − 5 ) 2 + 8 2 , cos α = 115 9 ⋅ 233 , α = 33. 2 ∘ . \cos\alpha = \dfrac{4\cdot12+(-7)\cdot(-5)+4\cdot8}{\sqrt{4^2+(-7)^2+4^2}\sqrt{12^2+(-5)^2+8^2}},\\
\cos\alpha = \dfrac{115}{9\cdot\sqrt{233}}, \\
\alpha = 33.2^\circ. cos α = 4 2 + ( − 7 ) 2 + 4 2 1 2 2 + ( − 5 ) 2 + 8 2 4 ⋅ 12 + ( − 7 ) ⋅ ( − 5 ) + 4 ⋅ 8 , cos α = 9 ⋅ 233 115 , α = 33. 2 ∘ .
Comments