Express the following surfaces in spherical coordinates :
yz=2
yz=2 ...(i)yz=2\ ...(i)yz=2 ...(i)
We know that
y=rsinθsinϕz=rcosθy=r\sinθ\sinϕ \\ z=r\cos{\theta}y=rsinθsinϕz=rcosθ
Putting these values in (i),
yz=rsinθsinϕ rcosθ=r2sinθcosθcosϕ=12r2sin2θcosϕyz= r\sinθ\sinϕ\ r\cos{\theta} \\=r^2\sin{\theta}\cos{\theta}\cos{\phi} \\=\frac{1}{2}r^2\sin{2\theta}\cos{\phi}yz=rsinθsinϕ rcosθ=r2sinθcosθcosϕ=21r2sin2θcosϕ
Now,
yz=2⇒12r2sin2θcosϕ=2⇒r2sin2θcosϕ=4, r>0, θ∈[0,π], ϕ∈[0,2π]yz=2 \\ \Rightarrow \frac{1}{2}r^2\sin{2\theta}\cos{\phi}=2 \\ \Rightarrow r^2\sin{2\theta}\cos{\phi}=4, \ r>0,\ \theta\in[0,\pi], \ \phi\in[0,2\pi]yz=2⇒21r2sin2θcosϕ=2⇒r2sin2θcosϕ=4, r>0, θ∈[0,π], ϕ∈[0,2π]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments