Question #288856

Express the following surfaces in spherical coordinates :


yz=2


1
Expert's answer
2022-01-22T15:23:22-0500

Solution:

yz=2 ...(i)yz=2\ ...(i)

We know that

y=rsinθsinϕz=rcosθy=r\sinθ\sinϕ \\ z=r\cos{\theta}

Putting these values in (i),

yz=rsinθsinϕ rcosθ=r2sinθcosθcosϕ=12r2sin2θcosϕyz= r\sinθ\sinϕ\ r\cos{\theta} \\=r^2\sin{\theta}\cos{\theta}\cos{\phi} \\=\frac{1}{2}r^2\sin{2\theta}\cos{\phi}

Now,

yz=212r2sin2θcosϕ=2r2sin2θcosϕ=4, r>0, θ[0,π], ϕ[0,2π]yz=2 \\ \Rightarrow \frac{1}{2}r^2\sin{2\theta}\cos{\phi}=2 \\ \Rightarrow r^2\sin{2\theta}\cos{\phi}=4, \ r>0,\ \theta\in[0,\pi], \ \phi\in[0,2\pi]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS