Find the intersection of the line and plane:
3y−x+z=−4,r(t)=⟨−1,2,1⟩+t⟨−2,−3,1⟩
3y−x+z=−4,r(t)=⟨−1,2,1⟩+t⟨−2,−3,1⟩
P=(
P=( , , )
"r(t)"
"=\u27e8-1,2,1\u27e9+t\u27e8-2,-3,1\u27e9"
"=\u27e8-1,2,1\u27e9+\u27e8-2t,-3t,t\u27e9"
Adding, this gives
"=\u27e8-1-2t,2-3t,1+t\u27e9"
"\\implies x=-1-2t"
"y=2-3t"
"z=1+t"
Substituting "x,y,z" into "3y-x+z", we have
"3(2-3t)-(-1-2t)+(1+t)=-4"
"\\implies6-9t+1+2t+1+t=-4"
"\\implies-9t+2t+t+6+1+1=-4"
"\\implies-6t+8=-4"
"\\implies-6t=-4-8"
"\\implies-6t=-12"
Dividing both sides by "-6" .This gives
"t=\\frac{-12}{-6}=2"
Substituting "t" into "\u27e8-1-2t,2-3t,1+t\u27e9"
We have
"\u27e8\u22121\u22122(2),2\u22123(2),1+2\u27e9"
"P=\u27e83,-4,3\u27e9"
Comments
Leave a comment