Question #287904

the two unit vectors parallel to the line π‘¦=βˆ’(3π‘₯+5)



1
Expert's answer
2022-02-01T15:10:48-0500

We have for coordinates of the vector uβƒ—:\vec u: y=βˆ’3x.y=-3x. Then

∣uβƒ—βˆ£=x2+y2=x2+(βˆ’3x)2=∣x∣10=1|\vec u|=\sqrt{x^2+y^2}=\sqrt{x^2+(-3x)^2}=|x|\sqrt{10}=1

∣x∣=1/10|x|=1/\sqrt{10}

The two unit vectors parallel to the line π‘¦=βˆ’(3π‘₯+5)𝑦=βˆ’(3π‘₯+5) are


uβƒ—1=βŸ¨βˆ’1/10,3/10⟩,uβƒ—2=⟨1/10,βˆ’3/10⟩\vec u_1=\lang -1/\sqrt{10}, 3/\sqrt{10}\rangle, \vec u_2=\lang 1/\sqrt{10}, -3/\sqrt{10}\rangle


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS