Write the equation of the line in slope-intercept form
y = m x + b y=mx+b y = m x + b Line
x − 3 y + 3 = 0 x-\sqrt{3}y+\sqrt{3}=0 x − 3 y + 3 = 0 y = 1 3 x + 1 y=\dfrac{1}{\sqrt{3}}x+1 y = 3 1 x + 1 s l o p e 1 = m 1 = 1 3 slope_1=m_1=\dfrac{1}{\sqrt{3}} s l o p e 1 = m 1 = 3 1 The angle between two lines
tan θ = ± m 2 − m 1 1 + m 1 m 2 \tan \theta=\pm\dfrac{m_2-m_1}{1+m_1m_2} tan θ = ± 1 + m 1 m 2 m 2 − m 1 Given θ = 30 ° \theta=30\degree θ = 30°
tan 30 ° = ± m 2 − m 1 1 + m 1 m 2 \tan 30\degree=\pm\dfrac{m_2-m_1}{1+m_1m_2} tan 30° = ± 1 + m 1 m 2 m 2 − m 1 1 3 = ± m 2 − 1 3 1 + 1 3 m 2 \dfrac{1}{\sqrt{3}}=\pm\dfrac{m_2-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}m_2} 3 1 = ± 1 + 3 1 m 2 m 2 − 3 1 3 + m 2 = ± ( 3 m 2 − 3 ) \sqrt{3}+m_2=\pm(3m_2-\sqrt{3}) 3 + m 2 = ± ( 3 m 2 − 3 ) Let
3 + m 2 = − ( 3 m 2 − 3 ) \sqrt{3}+m_2=-(3m_2-\sqrt{3}) 3 + m 2 = − ( 3 m 2 − 3 ) m 2 = 0 m_2=0 m 2 = 0 The equation of the line which passes through the point ( 1 , 3 ) (1, \sqrt{3}) ( 1 , 3 ) is
y = 3 y=\sqrt{3} y = 3
Let
3 + m 2 = ( 3 m 2 − 3 ) \sqrt{3}+m_2=(3m_2-\sqrt{3}) 3 + m 2 = ( 3 m 2 − 3 ) m 2 = 3 m_2=\sqrt{3} m 2 = 3 Point ( 1 , 3 ) (1, \sqrt{3}) ( 1 , 3 )
3 = 3 ( 1 ) + b = > b = 0 \sqrt{3}=\sqrt{3}(1)+b=>b=0 3 = 3 ( 1 ) + b => b = 0 The equation of the line which passes through the point ( 1 , 3 ) (1, \sqrt{3}) ( 1 , 3 ) is
y = 3 x y=\sqrt{3}x y = 3 x y = 3 y=\sqrt{3} y = 3 or y = 3 x y=\sqrt{3}x y = 3 x
Comments