For what values of c are the vectors [−8, 𝑐, 4] and [𝑐, 𝑐 2 , 𝑐] orthogonal?
Let c⃗1=−8i^+cj^+4k^,c⃗2=ci^+c2j^+ck^\vec c_1=-8\hat{i}+c\hat{j}+4\hat{k}, \vec c_2=c\hat{i}+c^2\hat{j}+c\hat{k}c1=−8i^+cj^+4k^,c2=ci^+c2j^+ck^
For vectors to be orthogonal, c⃗1.c⃗2=0\vec c_1.\vec c_2=0c1.c2=0
∴−8c+c3+4c=0⇒c(c2−4)=0⇒c=0,2,−2\therefore-8c+c^3+4c=0\\ \Rightarrow c(c^2-4)=0\\ \Rightarrow c=0,2,-2∴−8c+c3+4c=0⇒c(c2−4)=0⇒c=0,2,−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments