Question #245551

You are given the two vectors a=(1,2,1)\mathbf{a}=(1,2,1) and b=(3,4,2)\mathbf{b}=(3,-4,2) . Suppose that the pair of unit vectors perpendicular to both a and b are given by


±1p(q,1,r),\pm \frac{1}{\sqrt{p}}(q,1,r),

where p, q and r are some constants.



Determine the values of p, q and r.


1
Expert's answer
2021-10-04T16:18:22-0400

c=a×b=ijk121342=i(22(4)1)j(1213)+k(1(4)32)=8i+j10k=1p(q,1,r)8=qp1=1pp=1q=81=810=rpr=101=10c=\bold{a}\times\bold{b}=\begin{vmatrix} i & j & k \\ 1 & 2 & 1\\ 3 & -4 & 2 \end{vmatrix}\\ =i(2\cdot2-(-4)\cdot1)-j(1\cdot2-1\cdot3)+k(1\cdot(-4)-3\cdot2)=8i+j-10k\\ =\dfrac{1}{\sqrt{p}}(q,1,r)\\ 8=\dfrac{q}{\sqrt{p}}\\ 1=\dfrac{1}{\sqrt{p}}\\ \therefore p=1\\ q=8\sqrt{1}=8\\ -10=\dfrac{r}{\sqrt{p}}\\ r=-10\sqrt{1}=-10


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS