Reduce the following quadratic form to standard form and find its principal axes:
4x^2-4xy+y^2
"4x^2-4xy+y^2\\\\\n\\begin{pmatrix}\n 4 & -2 \\\\\n -2 & 1\n\\end{pmatrix}\\\\\n\\mathrm{The\\:eigenvalues\\:of}\\:A\\:\\mathrm{are\\:the\\:roots\\:of\\:the\\:characteristic\\:equation}\\:\\det \\left(A-\u03bb\\:I\\right)=0\\\\\n\u03bb=5,\\:\u03bb=0\\\\"
Therefore the orthogonal canonical reduction of the quadratic form is
"\ud835\udc44 = (\ud835\udc65\u2032 \ud835\udc66\u2032) \\begin{pmatrix}\n 0 & 0 \\\\\n 0 & 5\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix} = 5y'^2"
Principal axes at "\u03bb=0\\\\"
The reduced row echelon form of the matrix is "\\begin{bmatrix}\n 1 & 2\\\\\n 0 & 0\n\\end{bmatrix}"
To find the null space, solve the matrix equation"\\begin{bmatrix}\n 1 & 2\\\\\n 0 & 0\n\\end{bmatrix} \\begin{bmatrix}\n x_1 \\\\\n x_2\n\\end{bmatrix}= \\begin{bmatrix}\n 0\\\\\n 0 \n\\end{bmatrix}"
If we take "x_\n\n2\n\n=t\n\nx_2=t," then "x_1\u200b=\u22122tx_1\u200b=\u22122t" .
"Thus, x\u20d7 =\\begin{bmatrix}\n -2t \\\\\n t\n\\end{bmatrix}= \\begin{bmatrix}\n -2 \\\\\n 1\n\\end{bmatrix} t"
"|x|= \\sqrt{(-2)^2+1^2}=\\sqrt5"
"\\frac{1}{\\sqrt5}\\begin{pmatrix}\n -2 \\\\\n 1\n\\end{pmatrix}"
Principal axes at "\u03bb=5"
The reduced row echelon form of the matrix is "\\begin{bmatrix}\n 1 & -0.5\\\\\n 0 & 0\n\\end{bmatrix}"
To find the null space, solve the matrix equation"\\begin{bmatrix}\n 1 & -0.5\\\\\n 0 & 0\n\\end{bmatrix} \\begin{bmatrix}\n x_1 \\\\\n x_2\n\\end{bmatrix}= \\begin{bmatrix}\n 0\\\\\n 0 \n\\end{bmatrix}"
If we take "x_\n\n2\n\n=t\n\nx_2=t," then "x_1\u200b=\u22122tx_1\u200b=\u22122t" .
"Thus, x\u20d7 =\\begin{bmatrix}\n -0.5t \\\\\n t\n\\end{bmatrix}= \\begin{bmatrix}\n -0.5 \\\\\n 1\n\\end{bmatrix} t"
"|x|= \\sqrt{(-0.5)^2+1^2}=\\frac{\\sqrt5}{2}"
"\\frac{2}{\\sqrt5}\\begin{pmatrix}\n 0.5 \\\\\n 1\n\\end{pmatrix}"
Comments
Leave a comment