Question #226358

Reduce the following quadratic form to standard form and find its principal axes:

4x^2-4xy+y^2


1
Expert's answer
2021-08-18T14:15:56-0400

4x24xy+y2(4221)TheeigenvaluesofAaretherootsofthecharacteristicequationdet(AλI)=0λ=5,λ=04x^2-4xy+y^2\\ \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}\\ \mathrm{The\:eigenvalues\:of}\:A\:\mathrm{are\:the\:roots\:of\:the\:characteristic\:equation}\:\det \left(A-λ\:I\right)=0\\ λ=5,\:λ=0\\

Therefore the orthogonal canonical reduction of the quadratic form is

𝑄=(𝑥𝑦)(0005)(xy)=5y2𝑄 = (𝑥′ 𝑦′) \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = 5y'^2

Principal axes at λ=0λ=0\\

The reduced row echelon form of the matrix is [1200]\begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix}

To find the null space, solve the matrix equation[1200][x1x2]=[00]\begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 0\\ 0 \end{bmatrix}

If we take x2=tx2=t,x_ 2 =t x_2=t, then x1=2tx1=2tx_1​=−2tx_1​=−2t .

Thus,x=[2tt]=[21]tThus, x⃗ =\begin{bmatrix} -2t \\ t \end{bmatrix}= \begin{bmatrix} -2 \\ 1 \end{bmatrix} t

x=(2)2+12=5|x|= \sqrt{(-2)^2+1^2}=\sqrt5

15(21)\frac{1}{\sqrt5}\begin{pmatrix} -2 \\ 1 \end{pmatrix}

Principal axes at λ=5λ=5

The reduced row echelon form of the matrix is [10.500]\begin{bmatrix} 1 & -0.5\\ 0 & 0 \end{bmatrix}

To find the null space, solve the matrix equation[10.500][x1x2]=[00]\begin{bmatrix} 1 & -0.5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 0\\ 0 \end{bmatrix}

If we take x2=tx2=t,x_ 2 =t x_2=t, then x1=2tx1=2tx_1​=−2tx_1​=−2t .

Thus,x=[0.5tt]=[0.51]tThus, x⃗ =\begin{bmatrix} -0.5t \\ t \end{bmatrix}= \begin{bmatrix} -0.5 \\ 1 \end{bmatrix} t

x=(0.5)2+12=52|x|= \sqrt{(-0.5)^2+1^2}=\frac{\sqrt5}{2}

25(0.51)\frac{2}{\sqrt5}\begin{pmatrix} 0.5 \\ 1 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS