Question #212257

Let the plane P pass through the 3 points R = (1, 1, 6), S= (2,5,4) and T = (1,2,3).


Fill in the following:

  1. RS = (__,__,__)
  2. RT = (__,__,__)
  3. RS x RT = (__,__,__)




1
Expert's answer
2021-07-07T11:18:54-0400

R = (1, 1, 6)

S = (2, 5, 4)

T = (1, 2, 3)


To check if the points are collinear

116254123=1\begin{vmatrix} 1 & 1& 6\\ 2& 5& 4\\1&2&3 \end{vmatrix}=-1


(x1)(y1)(z6)(12)(15)(64)(11)(12)(63)=0\begin{vmatrix} (x- 1 )&( y-1)& (z-6)\\ (1-2)& (1-5)& (6-4)\\(1-1)&(1-2)&(6-3) \end{vmatrix}=0


(x1)(y1)(z6)142013=0\begin{vmatrix} (x- 1 )&( y-1)& (z-6)\\ -1& -4& 2\\0&-1&3 \end{vmatrix}= 0

On solving,

14(x1)((3)(y1))+1(z6)=0-14(x-1)-((-3)(y-1))+1(z-6)= 0

14x+14+3y3+z6=0-14x+14+3y-3+z-6 =0

14x3yz=514x-3y-z = 5 is the required equation.


R = 1i + 1j + 6k

S = 2i + 5j + 4k

T = 1i + 2i + 3k


1. RS=(x2x1)i^+(y2y1)j^+(z2z1)k^\overrightarrow{RS}= (x_2 – x_1) \hat{i} + (y_2 – y_1) \hat{j} + (z_2 – z_1) \hat{k}

RS=(21)i^+(51)j^+(46)k^=i^+4j^2k^=(1,4,2)\overrightarrow{RS}= (2 – 1) \hat{i} + (5–1) \hat{j} + (4– 6) \hat{k} = \hat{i}+ 4\hat{j}-2 \hat{k}= (1,4,-2)


2.

RT=(x3x1)i^+(y3y1)j^+(z3z1)k^\overrightarrow{RT}= (x_3– x_1) \hat{i} + (y_3– y_1) \hat{j} + (z_3 – z_1) \hat{k}

RT=(11)i^+(21)j^+(36)k^=0i^+j^3k^=(0,1,3)\overrightarrow{RT}= (1– 1) \hat{i} + (2–1) \hat{j} + (3– 6) \hat{k} = 0\hat{i}+ \hat{j}-3\hat{k}= (0,1,-3)


3.

RS×RT=(i^+4j^2k^)×(0i^+j^3k^)=\overrightarrow{RS} ×\overrightarrow{ RT }= (\hat{i}+ 4\hat{j}-2 \hat{k})×(0\hat{i}+ \hat{j}-3\hat{k}) =

ijk142013=\begin{vmatrix} i & j& k\\ 1& 4& -2\\0&1&-3 \end{vmatrix}=

i(12+2)j(30)+k(10)=10i^+3j^+1k^i(-12+2) -j(-3-0)+k(1-0)=-10\hat{i}+ 3\hat{j}+1\hat{k}


RS×RT=(10,3,1)\therefore\overrightarrow{RS} ×\overrightarrow{ RT }= (-10 ,3,1)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS