Let the plane P pass through the 3 points R = (1, 1, 6), S= (2,5,4) and T = (1,2,3).
Fill in the following:
R = (1, 1, 6)
S = (2, 5, 4)
T = (1, 2, 3)
To check if the points are collinear
"\\begin{vmatrix}\n 1 & 1& 6\\\\\n 2& 5& 4\\\\1&2&3\n\\end{vmatrix}=-1"
"\\begin{vmatrix}\n (x- 1 )&( y-1)& (z-6)\\\\\n (1-2)& (1-5)& (6-4)\\\\(1-1)&(1-2)&(6-3)\n\\end{vmatrix}=0"
"\\begin{vmatrix}\n (x- 1 )&( y-1)& (z-6)\\\\\n -1& -4& 2\\\\0&-1&3\n\\end{vmatrix}= 0"
On solving,
"-14(x-1)-((-3)(y-1))+1(z-6)= 0"
"-14x+14+3y-3+z-6 =0"
"14x-3y-z = 5" is the required equation.
R = 1i + 1j + 6k
S = 2i + 5j + 4k
T = 1i + 2i + 3k
1. "\\overrightarrow{RS}= (x_2 \u2013 x_1) \\hat{i} + (y_2 \u2013 y_1) \\hat{j} + (z_2 \u2013 z_1) \\hat{k}"
"\\overrightarrow{RS}= (2 \u2013 1) \\hat{i} + (5\u20131) \\hat{j} + (4\u2013 6) \\hat{k} = \\hat{i}+ 4\\hat{j}-2 \\hat{k}= (1,4,-2)"
2.
"\\overrightarrow{RT}= (x_3\u2013 x_1) \\hat{i} + (y_3\u2013 y_1) \\hat{j} + (z_3 \u2013 z_1) \\hat{k}"
"\\overrightarrow{RT}= (1\u2013 1) \\hat{i} + (2\u20131) \\hat{j} + (3\u2013 6) \\hat{k} = 0\\hat{i}+ \\hat{j}-3\\hat{k}= (0,1,-3)"
3.
"\\overrightarrow{RS} \u00d7\\overrightarrow{ RT }= (\\hat{i}+ 4\\hat{j}-2 \\hat{k})\u00d7(0\\hat{i}+ \\hat{j}-3\\hat{k}) ="
"\\begin{vmatrix}\n i & j& k\\\\\n 1& 4& -2\\\\0&1&-3\n\\end{vmatrix}="
"i(-12+2) -j(-3-0)+k(1-0)=-10\\hat{i}+ 3\\hat{j}+1\\hat{k}"
"\\therefore\\overrightarrow{RS} \u00d7\\overrightarrow{ RT }= (-10 ,3,1)"
Comments
Leave a comment