Question #202767

Find the equation of the cylinder with base

x2 + y2 + z2 + 3x+ 3y−z = 1,x + y+ 2z = 2.


1
Expert's answer
2021-06-07T10:46:23-0400

Solution:

Given

x2 + y2 + z+ 3x+ 3y−z = 1, x + y+ 2= 2

(x32)2(32)2+(y32)2(32)2+(z12)2(12)2=1(x32)2+(y32)2+(z12)2=234\Rightarrow (x-\frac32)^2-(\frac32)^2+(y-\frac32)^2-(\frac32)^2+(z-\frac12)^2-(\frac12)^2=1 \\ \Rightarrow (x-\frac32)^2+(y-\frac32)^2+(z-\frac12)^2=\frac{23}4

p=(x32,y32,z12)n=(1,1,2)p=(x-\frac32, y-\frac32, z-\frac12) \\ \vec{n}=(1,1,2)

p1=(0,0,1)p_{1}=\left(0,0, 1\right)

S p2(234)2=x2+y2+z2+3x+3yz=1S \rightarrow\ \left\langle|p\|^{2}-(\frac{23}4)^{2}\right\rangle=x^2 + y^2 + z^2 + 3x+ 3y−z = 1

Πn,pp1=x+y+2z=2\Pi \rightarrow\left\langle\vec{n}, p-p_{1}\right\rangle=x + y+ 2z = 2

The line Lp0+λnL \rightarrow p_{0}+\lambda \vec{n}

is potentially a cylinder generatrix, providing that p0SΠp_{0} \in S \cap \Pi

then

p0+λn2=p02+2λp0,n+λ2n2=234\left\|p_{0}+\lambda \vec{n}\right\|^{2}=\left\|p_{0}\right\|^{2}+2 \lambda\left\langle p_{0}, \vec{n}\right\rangle+\lambda^2\|\vec{n}\|^{2}=\frac{23}4

λ2n2+2λp0,n+p02234=0\Rightarrow \lambda^2\|\vec{n}\|^{2}+2 \lambda\left\langle p_{0}, \vec{n}\right\rangle+\left\|p_{0}\right\|^{2}-\frac{23}4=0

which is a quadratic equation in variable λ\lambda.

Solving for λ\lambda

λ=p0,n±p0,n24(n2)(p02234)n2\lambda=\dfrac{-\left\langle p_{0}, \vec{n}\right\rangle \pm \sqrt{\left\langle p_{0}, \vec{n}\right\rangle^{2}-4(\|\vec{n}\|^{2})(\left\|p_{0}\right\|^{2}-\frac{23}4})}{\|\vec{n}\|^{2}}

The tangency condition requires that

p0,n24(n2)(p02234)=0{\left\langle p_{0}, \vec{n}\right\rangle^{2}-4(\|\vec{n}\|^{2})(\left\|p_{0}\right\|^{2}-\frac{23}4})=0

p0,n24n2p02+23n2=0\Rightarrow {\left\langle p_{0}, \vec{n}\right\rangle^{2}-4\|\vec{n}\|^{2}\left\|p_{0}\right\|^{2}+23\|\vec{n}\|^{2}}=0 ...(i)

We have p0=(x0,y0,z0),n=(1,1,2),n2=6,p02=x02+y02+z02p_0=(x_0,y_0,z_0), \vec{n}=(1,1,2),\|\vec{n}\|^{2}=6,\|\vec{p_0}\|^{2}=x_0^2+y_0^2+z_0^2

So, (i) becomes,

(x0+y0+2z0)24(6)(x02+y02+z02)+23(6)=0x02+y02+4z02+2x0y0+4y0z0+4x0z024x0224y0224z02+138=0(x_0+y_0+2z_0)^2-4(6)(x_0^2+y_0^2+z_0^2)+23(6)=0 \\\Rightarrow x_0^2+y_0^2+4z_0^2+2x_0y_0+4y_0z_0+4x_0z_0 -24x_0^2-24y_0^2-24z_0^2+138=0

2x0y0+4y0z0+4x0z023x0223y0220z02+138=0\Rightarrow 2x_0y_0+4y_0z_0+4x_0z_0-23x_0^2-23y_0^2-20z_0^2 +138=0

which gives the equation of cylinder.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS