Solution:
Given
x2 + y2 + z2 + 3x+ 3y−z = 1, x + y+ 2z = 2
⇒(x−23)2−(23)2+(y−23)2−(23)2+(z−21)2−(21)2=1⇒(x−23)2+(y−23)2+(z−21)2=423
p=(x−23,y−23,z−21)n=(1,1,2)
p1=(0,0,1)
S→ ⟨∣p∥2−(423)2⟩=x2+y2+z2+3x+3y−z=1
Π→⟨n,p−p1⟩=x+y+2z=2
The line L→p0+λn
is potentially a cylinder generatrix, providing that p0∈S∩Π
then
∥p0+λn∥2=∥p0∥2+2λ⟨p0,n⟩+λ2∥n∥2=423
⇒λ2∥n∥2+2λ⟨p0,n⟩+∥p0∥2−423=0
which is a quadratic equation in variable λ.
Solving for λ
λ=∥n∥2−⟨p0,n⟩±⟨p0,n⟩2−4(∥n∥2)(∥p0∥2−423)
The tangency condition requires that
⟨p0,n⟩2−4(∥n∥2)(∥p0∥2−423)=0
⇒⟨p0,n⟩2−4∥n∥2∥p0∥2+23∥n∥2=0 ...(i)
We have p0=(x0,y0,z0),n=(1,1,2),∥n∥2=6,∥p0∥2=x02+y02+z02
So, (i) becomes,
(x0+y0+2z0)2−4(6)(x02+y02+z02)+23(6)=0⇒x02+y02+4z02+2x0y0+4y0z0+4x0z0−24x02−24y02−24z02+138=0
⇒2x0y0+4y0z0+4x0z0−23x02−23y02−20z02+138=0
which gives the equation of cylinder.
Comments