Solution:
Given
x 2 + y 2 + z 2 + 3x + 3y−z = 1, x + y+ 2z = 2
⇒ ( x − 3 2 ) 2 − ( 3 2 ) 2 + ( y − 3 2 ) 2 − ( 3 2 ) 2 + ( z − 1 2 ) 2 − ( 1 2 ) 2 = 1 ⇒ ( x − 3 2 ) 2 + ( y − 3 2 ) 2 + ( z − 1 2 ) 2 = 23 4 \Rightarrow (x-\frac32)^2-(\frac32)^2+(y-\frac32)^2-(\frac32)^2+(z-\frac12)^2-(\frac12)^2=1
\\ \Rightarrow (x-\frac32)^2+(y-\frac32)^2+(z-\frac12)^2=\frac{23}4 ⇒ ( x − 2 3 ) 2 − ( 2 3 ) 2 + ( y − 2 3 ) 2 − ( 2 3 ) 2 + ( z − 2 1 ) 2 − ( 2 1 ) 2 = 1 ⇒ ( x − 2 3 ) 2 + ( y − 2 3 ) 2 + ( z − 2 1 ) 2 = 4 23
p = ( x − 3 2 , y − 3 2 , z − 1 2 ) n ⃗ = ( 1 , 1 , 2 ) p=(x-\frac32, y-\frac32, z-\frac12)
\\
\vec{n}=(1,1,2) p = ( x − 2 3 , y − 2 3 , z − 2 1 ) n = ( 1 , 1 , 2 )
p 1 = ( 0 , 0 , 1 ) p_{1}=\left(0,0, 1\right) p 1 = ( 0 , 0 , 1 )
S → ⟨ ∣ p ∥ 2 − ( 23 4 ) 2 ⟩ = x 2 + y 2 + z 2 + 3 x + 3 y − z = 1 S \rightarrow\ \left\langle|p\|^{2}-(\frac{23}4)^{2}\right\rangle=x^2 + y^2 + z^2 + 3x+ 3y−z = 1 S → ⟨ ∣ p ∥ 2 − ( 4 23 ) 2 ⟩ = x 2 + y 2 + z 2 + 3 x + 3 y − z = 1
Π → ⟨ n ⃗ , p − p 1 ⟩ = x + y + 2 z = 2 \Pi \rightarrow\left\langle\vec{n}, p-p_{1}\right\rangle=x + y+ 2z = 2 Π → ⟨ n , p − p 1 ⟩ = x + y + 2 z = 2
The line L → p 0 + λ n ⃗ L \rightarrow p_{0}+\lambda \vec{n} L → p 0 + λ n
is potentially a cylinder generatrix, providing that p 0 ∈ S ∩ Π p_{0} \in S \cap \Pi p 0 ∈ S ∩ Π
then
∥ p 0 + λ n ⃗ ∥ 2 = ∥ p 0 ∥ 2 + 2 λ ⟨ p 0 , n ⃗ ⟩ + λ 2 ∥ n ⃗ ∥ 2 = 23 4 \left\|p_{0}+\lambda \vec{n}\right\|^{2}=\left\|p_{0}\right\|^{2}+2 \lambda\left\langle p_{0}, \vec{n}\right\rangle+\lambda^2\|\vec{n}\|^{2}=\frac{23}4 ∥ p 0 + λ n ∥ 2 = ∥ p 0 ∥ 2 + 2 λ ⟨ p 0 , n ⟩ + λ 2 ∥ n ∥ 2 = 4 23
⇒ λ 2 ∥ n ⃗ ∥ 2 + 2 λ ⟨ p 0 , n ⃗ ⟩ + ∥ p 0 ∥ 2 − 23 4 = 0 \Rightarrow \lambda^2\|\vec{n}\|^{2}+2 \lambda\left\langle p_{0}, \vec{n}\right\rangle+\left\|p_{0}\right\|^{2}-\frac{23}4=0 ⇒ λ 2 ∥ n ∥ 2 + 2 λ ⟨ p 0 , n ⟩ + ∥ p 0 ∥ 2 − 4 23 = 0
which is a quadratic equation in variable λ \lambda λ .
Solving for λ \lambda λ
λ = − ⟨ p 0 , n ⃗ ⟩ ± ⟨ p 0 , n ⃗ ⟩ 2 − 4 ( ∥ n ⃗ ∥ 2 ) ( ∥ p 0 ∥ 2 − 23 4 ) ∥ n ⃗ ∥ 2 \lambda=\dfrac{-\left\langle p_{0}, \vec{n}\right\rangle \pm \sqrt{\left\langle p_{0}, \vec{n}\right\rangle^{2}-4(\|\vec{n}\|^{2})(\left\|p_{0}\right\|^{2}-\frac{23}4})}{\|\vec{n}\|^{2}} λ = ∥ n ∥ 2 − ⟨ p 0 , n ⟩ ± ⟨ p 0 , n ⟩ 2 − 4 ( ∥ n ∥ 2 ) ( ∥ p 0 ∥ 2 − 4 23 )
The tangency condition requires that
⟨ p 0 , n ⃗ ⟩ 2 − 4 ( ∥ n ⃗ ∥ 2 ) ( ∥ p 0 ∥ 2 − 23 4 ) = 0 {\left\langle p_{0}, \vec{n}\right\rangle^{2}-4(\|\vec{n}\|^{2})(\left\|p_{0}\right\|^{2}-\frac{23}4})=0 ⟨ p 0 , n ⟩ 2 − 4 ( ∥ n ∥ 2 ) ( ∥ p 0 ∥ 2 − 4 23 ) = 0
⇒ ⟨ p 0 , n ⃗ ⟩ 2 − 4 ∥ n ⃗ ∥ 2 ∥ p 0 ∥ 2 + 23 ∥ n ⃗ ∥ 2 = 0 \Rightarrow {\left\langle p_{0}, \vec{n}\right\rangle^{2}-4\|\vec{n}\|^{2}\left\|p_{0}\right\|^{2}+23\|\vec{n}\|^{2}}=0 ⇒ ⟨ p 0 , n ⟩ 2 − 4∥ n ∥ 2 ∥ p 0 ∥ 2 + 23∥ n ∥ 2 = 0 ...(i)
We have p 0 = ( x 0 , y 0 , z 0 ) , n ⃗ = ( 1 , 1 , 2 ) , ∥ n ⃗ ∥ 2 = 6 , ∥ p 0 ⃗ ∥ 2 = x 0 2 + y 0 2 + z 0 2 p_0=(x_0,y_0,z_0), \vec{n}=(1,1,2),\|\vec{n}\|^{2}=6,\|\vec{p_0}\|^{2}=x_0^2+y_0^2+z_0^2 p 0 = ( x 0 , y 0 , z 0 ) , n = ( 1 , 1 , 2 ) , ∥ n ∥ 2 = 6 , ∥ p 0 ∥ 2 = x 0 2 + y 0 2 + z 0 2
So, (i) becomes,
( x 0 + y 0 + 2 z 0 ) 2 − 4 ( 6 ) ( x 0 2 + y 0 2 + z 0 2 ) + 23 ( 6 ) = 0 ⇒ x 0 2 + y 0 2 + 4 z 0 2 + 2 x 0 y 0 + 4 y 0 z 0 + 4 x 0 z 0 − 24 x 0 2 − 24 y 0 2 − 24 z 0 2 + 138 = 0 (x_0+y_0+2z_0)^2-4(6)(x_0^2+y_0^2+z_0^2)+23(6)=0
\\\Rightarrow x_0^2+y_0^2+4z_0^2+2x_0y_0+4y_0z_0+4x_0z_0 -24x_0^2-24y_0^2-24z_0^2+138=0 ( x 0 + y 0 + 2 z 0 ) 2 − 4 ( 6 ) ( x 0 2 + y 0 2 + z 0 2 ) + 23 ( 6 ) = 0 ⇒ x 0 2 + y 0 2 + 4 z 0 2 + 2 x 0 y 0 + 4 y 0 z 0 + 4 x 0 z 0 − 24 x 0 2 − 24 y 0 2 − 24 z 0 2 + 138 = 0
⇒ 2 x 0 y 0 + 4 y 0 z 0 + 4 x 0 z 0 − 23 x 0 2 − 23 y 0 2 − 20 z 0 2 + 138 = 0 \Rightarrow 2x_0y_0+4y_0z_0+4x_0z_0-23x_0^2-23y_0^2-20z_0^2 +138=0 ⇒ 2 x 0 y 0 + 4 y 0 z 0 + 4 x 0 z 0 − 23 x 0 2 − 23 y 0 2 − 20 z 0 2 + 138 = 0
which gives the equation of cylinder.
Comments