(8.1)
The scalar triple product is unchanged under a circular shift of its three operands
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = w ⃗ ⋅ ( u ⃗ × v ⃗ ) = v ⃗ ⋅ ( w ⃗ × u ⃗ ) \vec u \cdot(\vec v \times \vec w)=\vec w \cdot(\vec u \times \vec v)=\vec v \cdot(\vec w \times \vec u) u ⋅ ( v × w ) = w ⋅ ( u × v ) = v ⋅ ( w × u )
u ⃗ = ⟨ − 1 , 1 , 2 ⟩ , v ⃗ = ⟨ 2 , − 1 , 0 ⟩ , w ⃗ = ⟨ 1 , 1 , 3 ⟩ \vec u=\lang-1, 1, 2\rang, \vec v=\lang2, -1, 0\rang, \vec w=\lang1, 1, 3\rang u = ⟨ − 1 , 1 , 2 ⟩ , v = ⟨ 2 , − 1 , 0 ⟩ , w = ⟨ 1 , 1 , 3 ⟩
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = ∣ − 1 1 2 2 − 1 0 1 1 3 ∣ \vec u \cdot(\vec v \times \vec w)=\begin{vmatrix}
-1 & 1 & 2 \\
2 & -1 & 0 \\
1 & 1 & 3 \\
\end{vmatrix} u ⋅ ( v × w ) = ∣ ∣ − 1 2 1 1 − 1 1 2 0 3 ∣ ∣
= − 1 ∣ − 1 0 1 3 ∣ − 1 ∣ 2 0 1 3 ∣ + 2 ∣ 2 − 1 1 1 ∣ =-1\begin{vmatrix}
-1 & 0 \\
1 & 3
\end{vmatrix}-1\begin{vmatrix}
2 & 0 \\
1 & 3
\end{vmatrix}+2\begin{vmatrix}
2 & -1 \\
1 & 1
\end{vmatrix} = − 1 ∣ ∣ − 1 1 0 3 ∣ ∣ − 1 ∣ ∣ 2 1 0 3 ∣ ∣ + 2 ∣ ∣ 2 1 − 1 1 ∣ ∣
= 3 − 6 + 6 = 3 =3-6+6=3 = 3 − 6 + 6 = 3
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = w ⃗ ⋅ ( u ⃗ × v ⃗ ) = v ⃗ ⋅ ( w ⃗ × u ⃗ ) = 3 \vec u \cdot(\vec v \times \vec w)=\vec w \cdot(\vec u \times \vec v)=\vec v \cdot(\vec w \times \vec u)=3 u ⋅ ( v × w ) = w ⋅ ( u × v ) = v ⋅ ( w × u ) = 3
(8.2)
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = 3 \vec u \cdot(\vec v \times \vec w)=3 u ⋅ ( v × w ) = 3
v ⃗ × w ⃗ = ∣ i ⃗ j ⃗ k ⃗ 2 − 1 0 1 1 3 ∣ \vec v \times \vec w=\begin{vmatrix}
\vec i & \vec j & \vec k \\
2 & -1 & 0 \\
1 & 1 & 3 \\
\end{vmatrix} v × w = ∣ ∣ i 2 1 j − 1 1 k 0 3 ∣ ∣
= i ⃗ ∣ − 1 0 1 3 ∣ − j ⃗ ∣ 2 0 1 3 ∣ + k ⃗ ∣ 2 − 1 1 1 ∣ =\vec i\begin{vmatrix}
-1 & 0 \\
1 & 3
\end{vmatrix}-\vec j\begin{vmatrix}
2 & 0 \\
1 & 3
\end{vmatrix}+\vec k\begin{vmatrix}
2 & -1 \\
1 & 1
\end{vmatrix} = i ∣ ∣ − 1 1 0 3 ∣ ∣ − j ∣ ∣ 2 1 0 3 ∣ ∣ + k ∣ ∣ 2 1 − 1 1 ∣ ∣
= − 3 i ⃗ − 6 j ⃗ + 3 k ⃗ =-3\vec i-6\vec j+3\vec k = − 3 i − 6 j + 3 k
u ⃗ × ( v ⃗ × w ⃗ ) = ∣ i ⃗ j ⃗ k ⃗ − 1 1 2 − 3 − 6 3 ∣ \vec u \times(\vec v \times \vec w)=\begin{vmatrix}
\vec i & \vec j & \vec k \\
-1 & 1 & 2 \\
-3 & -6 & 3 \\
\end{vmatrix} u × ( v × w ) = ∣ ∣ i − 1 − 3 j 1 − 6 k 2 3 ∣ ∣
= i ⃗ ∣ 1 2 − 6 3 ∣ − j ⃗ ∣ − 1 2 − 3 3 ∣ + k ⃗ ∣ − 1 1 − 3 − 6 ∣ =\vec i\begin{vmatrix}
1 & 2 \\
-6 & 3
\end{vmatrix}-\vec j\begin{vmatrix}
-1 & 2 \\
-3 & 3
\end{vmatrix}+\vec k\begin{vmatrix}
-1 & 1 \\
-3 & -6
\end{vmatrix} = i ∣ ∣ 1 − 6 2 3 ∣ ∣ − j ∣ ∣ − 1 − 3 2 3 ∣ ∣ + k ∣ ∣ − 1 − 3 1 − 6 ∣ ∣
= 15 i ⃗ − 3 j ⃗ + 9 k ⃗ =15\vec i-3\vec j+9\vec k = 15 i − 3 j + 9 k
(8.3)
u ⃗ = ⟨ − 1 , 1 , 2 ⟩ , v ⃗ = ⟨ 2 , − 1 , 0 ⟩ , w ⃗ = ⟨ 1 , 1 , 3 ⟩ \vec u=\lang-1, 1, 2\rang, \vec v=\lang2, -1, 0\rang, \vec w=\lang1, 1, 3\rang u = ⟨ − 1 , 1 , 2 ⟩ , v = ⟨ 2 , − 1 , 0 ⟩ , w = ⟨ 1 , 1 , 3 ⟩
A B → = ⟨ 3 , − 2 , − 2 ⟩ , B C → = ⟨ − 1 , 2 , 3 ⟩ , A C → = ⟨ 2 , 0 , 1 ⟩ \overrightarrow{AB}=\lang3, -2, -2\rang, \overrightarrow{BC}=\lang-1, 2, 3\rang, \overrightarrow{AC}=\lang2, 0, 1\rang A B = ⟨ 3 , − 2 , − 2 ⟩ , BC = ⟨ − 1 , 2 , 3 ⟩ , A C = ⟨ 2 , 0 , 1 ⟩
A B = ( 3 ) 2 + ( − 2 ) 2 + ( − 2 ) 2 = 17 AB=\sqrt{(3)^2+(-2)^2+(-2)^2}=\sqrt{17} A B = ( 3 ) 2 + ( − 2 ) 2 + ( − 2 ) 2 = 17
B C = ( − 1 ) 2 + ( 2 ) 2 + ( 3 ) 2 = 14 BC=\sqrt{(-1)^2+(2)^2+(3)^2}=\sqrt{14} BC = ( − 1 ) 2 + ( 2 ) 2 + ( 3 ) 2 = 14
A C = ( 2 ) 2 + ( 1 ) 2 + ( 0 ) 2 = 5 AC=\sqrt{(2)^2+(1)^2+(0)^2}=\sqrt{5} A C = ( 2 ) 2 + ( 1 ) 2 + ( 0 ) 2 = 5
A B → ⋅ A C → = 3 ( 2 ) − 2 ( 0 ) − 2 ( 1 ) = 4 \overrightarrow{AB}\cdot \overrightarrow{AC}=3(2)-2(0)-2(1)=4 A B ⋅ A C = 3 ( 2 ) − 2 ( 0 ) − 2 ( 1 ) = 4
B A → ⋅ B C → = − 3 ( − 1 ) + 2 ( 2 ) + 2 ( 3 ) = 13 \overrightarrow{BA}\cdot \overrightarrow{BC}=-3(-1)+2(2)+2(3)=13 B A ⋅ BC = − 3 ( − 1 ) + 2 ( 2 ) + 2 ( 3 ) = 13
C A → ⋅ C B → = − 2 ( 1 ) + 0 ( − 2 ) − 1 ( − 3 ) = 1 \overrightarrow{CA}\cdot \overrightarrow{CB}=-2(1)+0(-2)-1(-3)=1 C A ⋅ CB = − 2 ( 1 ) + 0 ( − 2 ) − 1 ( − 3 ) = 1
cos α = − 3 6 5 = > α = 180 ° − cos − 1 30 10 \cos\alpha=\dfrac{-3}{\sqrt{6}\sqrt{5}}=>\alpha=180\degree-\cos^{-1}\dfrac{\sqrt{30}}{10} cos α = 6 5 − 3 => α = 180° − cos − 1 10 30
≈ 64.3 ° \approx64.3\degree ≈ 64.3°
cos β = 13 17 14 = > β = cos − 1 13 238 238 \cos\beta=\dfrac{13}{\sqrt{17}\sqrt{14}}=>\beta=\cos^{-1}\dfrac{13\sqrt{238}}{238} cos β = 17 14 13 => β = cos − 1 238 13 238
≈ 32.6 ° \approx32.6\degree ≈ 32.6°
cos γ = 1 5 14 = > γ = cos − 1 70 70 \cos\gamma=\dfrac{1}{\sqrt{5}\sqrt{14}}=>\gamma=\cos^{-1}\dfrac{\sqrt{70}}{70} cos γ = 5 14 1 => γ = cos − 1 70 70
≈ 83.1 ° \approx83.1\degree ≈ 83.1°
(8.4)
u ⃗ × v ⃗ = ∣ i ⃗ j ⃗ k ⃗ − 1 1 2 2 − 1 0 ∣ \vec u \times \vec v=\begin{vmatrix}
\vec i & \vec j & \vec k \\
-1 & 1 & 2 \\
2 & -1 & 0 \\
\end{vmatrix} u × v = ∣ ∣ i − 1 2 j 1 − 1 k 2 0 ∣ ∣
= i ⃗ ∣ 1 2 − 1 0 ∣ − j ⃗ ∣ − 1 2 2 0 ∣ + k ⃗ ∣ − 1 1 2 − 1 ∣ =\vec i\begin{vmatrix}
1 & 2 \\
-1 & 0
\end{vmatrix}-\vec j\begin{vmatrix}
-1 & 2 \\
2 & 0
\end{vmatrix}+\vec k\begin{vmatrix}
-1 & 1 \\
2 & -1
\end{vmatrix} = i ∣ ∣ 1 − 1 2 0 ∣ ∣ − j ∣ ∣ − 1 2 2 0 ∣ ∣ + k ∣ ∣ − 1 2 1 − 1 ∣ ∣
= 2 i ⃗ + j ⃗ − k ⃗ =2\vec i+\vec j-\vec k = 2 i + j − k
A r e a = ∥ u ⃗ × v ⃗ ∥ = ( 2 ) 2 + ( 1 ) 2 + ( − 1 ) 2 = 6 ( u n i t s 2 ) Area=\|\vec u \times \vec v\|=\sqrt{(2)^2+(1)^2+(-1)^2}=\sqrt{6}\ (units^2) A re a = ∥ u × v ∥ = ( 2 ) 2 + ( 1 ) 2 + ( − 1 ) 2 = 6 ( u ni t s 2 )
(8.5)
V = ∣ u ⃗ ⋅ ( v ⃗ × w ⃗ ) ∣ = ∣ ∣ − 1 1 2 2 − 1 0 1 1 3 ∣ ∣ = 3 ( u n i t s 3 ) V=|\vec u \cdot(\vec v \times \vec w)|=\bigg|\begin{vmatrix}
-1 & 1 & 2 \\
2 & -1 & 0 \\
1 & 1 & 3 \\
\end{vmatrix}\bigg|=3 (units^3\ ) V = ∣ u ⋅ ( v × w ) ∣ = ∣ ∣ ∣ ∣ − 1 2 1 1 − 1 1 2 0 3 ∣ ∣ ∣ ∣ = 3 ( u ni t s 3 )
Comments