(8.1)
The scalar triple product is unchanged under a circular shift of its three operands
u⋅(v×w)=w⋅(u×v)=v⋅(w×u)
u=⟨−1,1,2⟩,v=⟨2,−1,0⟩,w=⟨1,1,3⟩
u⋅(v×w)=∣∣−1211−11203∣∣
=−1∣∣−1103∣∣−1∣∣2103∣∣+2∣∣21−11∣∣
=3−6+6=3
u⋅(v×w)=w⋅(u×v)=v⋅(w×u)=3
(8.2)
u⋅(v×w)=3
v×w=∣∣i21j−11k03∣∣
=i∣∣−1103∣∣−j∣∣2103∣∣+k∣∣21−11∣∣
=−3i−6j+3k
u×(v×w)=∣∣i−1−3j1−6k23∣∣
=i∣∣1−623∣∣−j∣∣−1−323∣∣+k∣∣−1−31−6∣∣
=15i−3j+9k
(8.3)
u=⟨−1,1,2⟩,v=⟨2,−1,0⟩,w=⟨1,1,3⟩
AB=⟨3,−2,−2⟩,BC=⟨−1,2,3⟩,AC=⟨2,0,1⟩
AB=(3)2+(−2)2+(−2)2=17
BC=(−1)2+(2)2+(3)2=14
AC=(2)2+(1)2+(0)2=5
AB⋅AC=3(2)−2(0)−2(1)=4
BA⋅BC=−3(−1)+2(2)+2(3)=13
CA⋅CB=−2(1)+0(−2)−1(−3)=1
cosα=65−3=>α=180°−cos−11030
≈64.3°
cosβ=171413=>β=cos−123813238
≈32.6°
cosγ=5141=>γ=cos−17070
≈83.1°
(8.4)
u×v=∣∣i−12j1−1k20∣∣
=i∣∣1−120∣∣−j∣∣−1220∣∣+k∣∣−121−1∣∣
=2i+j−k
Area=∥u×v∥=(2)2+(1)2+(−1)2=6 (units2)
(8.5)
V=∣u⋅(v×w)∣=∣∣∣∣−1211−11203∣∣∣∣=3(units3 )
Comments