Question #200633

Compute and find a relation between the expressions

(8.1) ~u · (~v × w~ ), w~ · (~u × ~v), and ~v · (w~ × ~u)

Find an expression for :

(8.2) ~u · (~v × w~ ) and ~u × (~v × w~ )

(8.3) Find the side lengths and angles of the triangle with vertices the tips the vectors in Question 6 above.

(8.4) Use ~u and ~v from Question 6 to find the area of the parallelogram formed by ~u and ~v.

(8.5) Use ~u, ~v and w~ from Question 6 to find the volume of the parallelepiped with edges deter- mined by the three vectors ~u, ~v and w~ 


1
Expert's answer
2021-06-07T16:58:56-0400

(8.1)

The scalar triple product is unchanged under a circular shift of its three operands


u(v×w)=w(u×v)=v(w×u)\vec u \cdot(\vec v \times \vec w)=\vec w \cdot(\vec u \times \vec v)=\vec v \cdot(\vec w \times \vec u)

u=1,1,2,v=2,1,0,w=1,1,3\vec u=\lang-1, 1, 2\rang, \vec v=\lang2, -1, 0\rang, \vec w=\lang1, 1, 3\rang

u(v×w)=112210113\vec u \cdot(\vec v \times \vec w)=\begin{vmatrix} -1 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 3 \\ \end{vmatrix}

=1101312013+22111=-1\begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix}-1\begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix}+2\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}

=36+6=3=3-6+6=3

u(v×w)=w(u×v)=v(w×u)=3\vec u \cdot(\vec v \times \vec w)=\vec w \cdot(\vec u \times \vec v)=\vec v \cdot(\vec w \times \vec u)=3

(8.2)


u(v×w)=3\vec u \cdot(\vec v \times \vec w)=3

v×w=ijk210113\vec v \times \vec w=\begin{vmatrix} \vec i & \vec j & \vec k \\ 2 & -1 & 0 \\ 1 & 1 & 3 \\ \end{vmatrix}

=i1013j2013+k2111=\vec i\begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix}-\vec j\begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix}+\vec k\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}

=3i6j+3k=-3\vec i-6\vec j+3\vec k


u×(v×w)=ijk112363\vec u \times(\vec v \times \vec w)=\begin{vmatrix} \vec i & \vec j & \vec k \\ -1 & 1 & 2 \\ -3 & -6 & 3 \\ \end{vmatrix}

=i1263j1233+k1136=\vec i\begin{vmatrix} 1 & 2 \\ -6 & 3 \end{vmatrix}-\vec j\begin{vmatrix} -1 & 2 \\ -3 & 3 \end{vmatrix}+\vec k\begin{vmatrix} -1 & 1 \\ -3 & -6 \end{vmatrix}

=15i3j+9k=15\vec i-3\vec j+9\vec k


(8.3)

u=1,1,2,v=2,1,0,w=1,1,3\vec u=\lang-1, 1, 2\rang, \vec v=\lang2, -1, 0\rang, \vec w=\lang1, 1, 3\rang


AB=3,2,2,BC=1,2,3,AC=2,0,1\overrightarrow{AB}=\lang3, -2, -2\rang, \overrightarrow{BC}=\lang-1, 2, 3\rang, \overrightarrow{AC}=\lang2, 0, 1\rang


AB=(3)2+(2)2+(2)2=17AB=\sqrt{(3)^2+(-2)^2+(-2)^2}=\sqrt{17}

BC=(1)2+(2)2+(3)2=14BC=\sqrt{(-1)^2+(2)^2+(3)^2}=\sqrt{14}


AC=(2)2+(1)2+(0)2=5AC=\sqrt{(2)^2+(1)^2+(0)^2}=\sqrt{5}

ABAC=3(2)2(0)2(1)=4\overrightarrow{AB}\cdot \overrightarrow{AC}=3(2)-2(0)-2(1)=4

BABC=3(1)+2(2)+2(3)=13\overrightarrow{BA}\cdot \overrightarrow{BC}=-3(-1)+2(2)+2(3)=13

CACB=2(1)+0(2)1(3)=1\overrightarrow{CA}\cdot \overrightarrow{CB}=-2(1)+0(-2)-1(-3)=1

cosα=365=>α=180°cos13010\cos\alpha=\dfrac{-3}{\sqrt{6}\sqrt{5}}=>\alpha=180\degree-\cos^{-1}\dfrac{\sqrt{30}}{10}

64.3°\approx64.3\degree

cosβ=131714=>β=cos113238238\cos\beta=\dfrac{13}{\sqrt{17}\sqrt{14}}=>\beta=\cos^{-1}\dfrac{13\sqrt{238}}{238}

32.6°\approx32.6\degree

cosγ=1514=>γ=cos17070\cos\gamma=\dfrac{1}{\sqrt{5}\sqrt{14}}=>\gamma=\cos^{-1}\dfrac{\sqrt{70}}{70}

83.1°\approx83.1\degree

(8.4)


u×v=ijk112210\vec u \times \vec v=\begin{vmatrix} \vec i & \vec j & \vec k \\ -1 & 1 & 2 \\ 2 & -1 & 0 \\ \end{vmatrix}

=i1210j1220+k1121=\vec i\begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix}-\vec j\begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix}+\vec k\begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix}

=2i+jk=2\vec i+\vec j-\vec k

Area=u×v=(2)2+(1)2+(1)2=6 (units2)Area=\|\vec u \times \vec v\|=\sqrt{(2)^2+(1)^2+(-1)^2}=\sqrt{6}\ (units^2)


(8.5)


V=u(v×w)=112210113=3(units3 )V=|\vec u \cdot(\vec v \times \vec w)|=\bigg|\begin{vmatrix} -1 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 3 \\ \end{vmatrix}\bigg|=3 (units^3\ )


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS