Question #200630

We assume given a plane U passing by the tip of the vectors ~u =< −1, 1, 2 >, ~v =< 2, −1, 0 > and w~ =< 1, 1, 3 >.

(6.1) Find the dot products ~u · ~v and w~ · ~v

(6.2) Determine whether or not there is a vector ~n that is perpendicular to U. If yes, then find the vector ~n. Otherwise explain why such a vector does not exist?


1
Expert's answer
2021-06-08T12:57:44-0400

(6.1)


uv=1(2)+1(1)+2(0)=3\vec u\cdot\vec v=-1(2)+1(-1)+2(0)=-3

wv=1(2)+1(1)+3(0)=1\vec w\cdot\vec v=1(2)+1(-1)+3(0)=1

(6.2)


u×v=ijk112210\vec u\times\vec v=\begin{vmatrix} \vec i & \vec j & \vec k \\ -1 & 1 & 2 \\ 2 & -1 & 0 \\ \end{vmatrix}

=i1210j1220+k1121=\vec i\begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix}-\vec j\begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix}+\vec k\begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix}

=2i+4jk=2\vec i+4\vec j-\vec k



u×w=ijk112113\vec u\times\vec w=\begin{vmatrix} \vec i & \vec j & \vec k \\ -1 & 1 & 2 \\ 1 & 1 & 3 \\ \end{vmatrix}

=i1213j1213+k1111=\vec i\begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix}-\vec j\begin{vmatrix} -1 & 2 \\ 1 & 3 \end{vmatrix}+\vec k\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix}

=i+5j2k=\vec i+5\vec j-2\vec k


Two vectors 2i+4jk2\vec i+4\vec j-\vec k and i+5j2k\vec i+5\vec j-2\vec k are not collinear.

Three vectors are not in the single plane. Then we cannot find the vector n.\vec n. Such vector n\vec n does not exist.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS