We assume given a plane U passing by the tip of the vectors ~u =< −1, 1, 2 >, ~v =< 2, −1, 0 > and w~ =< 1, 1, 3 >.
(6.1) Find the dot products ~u · ~v and w~ · ~v
(6.2) Determine whether or not there is a vector ~n that is perpendicular to U. If yes, then find the vector ~n. Otherwise explain why such a vector does not exist?
(6.1)
"\\vec w\\cdot\\vec v=1(2)+1(-1)+3(0)=1"
(6.2)
"=\\vec i\\begin{vmatrix}\n 1 & 2 \\\\\n -1 & 0\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n -1 & 2 \\\\\n 2 & 0\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n -1 & 1 \\\\\n 2 & -1\n\\end{vmatrix}"
"=2\\vec i+4\\vec j-\\vec k"
"=\\vec i\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & 3\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n -1 & 2 \\\\\n 1 & 3\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n -1 & 1 \\\\\n 1 & 1\n\\end{vmatrix}"
"=\\vec i+5\\vec j-2\\vec k"
Two vectors "2\\vec i+4\\vec j-\\vec k" and "\\vec i+5\\vec j-2\\vec k" are not collinear.
Three vectors are not in the single plane. Then we cannot find the vector "\\vec n." Such vector "\\vec n" does not exist.
Comments
Leave a comment