Question #184469

1. (Sections 2.3, 2.10, 2.11, 2.12) Let L1 be the line in R 3 with equation (x, y, z) = (1, 0, 2) + t(−1, 3, 4) ; t ∈ R and let L2 be the line that is parallel to L1 and contains the point (1, −1, 3). Let V be the plane that contains both the lines L1 and L2. (a) Find two vectors that are both parallel to the plane V but are not parallel to one another. (2) (b) Find a vector that is perpendicular to the plane V . (2) (c) Find an equation for the plane V . (2) (d) Find an equation for the line L3 that is perpendicular to the plane V and contains the point (1, −1, 4) . (2) Hint: Find a parametric equation for L3. Don’t try to find a Cartesian equation for L3. (Study Remarks 2.12.2.)


1
Expert's answer
2021-04-27T01:47:09-0400

L1:(x,y,z)=(1,0,2)+t(1,3,4),tRL1L2L1:(x,y,z)=(1,1,3)+t(1,3,4),tRV:L1V,L2VL_1 : (x,y,z)=(1,0,2)+t(-1,3,4), t\in R\\ L_1 ||L_2 \\ L_1 : (x,y,z)=(1,-1,3)+t(-1,3,4), t\in R\\ V: L_1\in V, L_2\in V

a)

a=(1,3,4)VA(1,0,2)L1B(1,1,3)L2AB=(11,10,32)=(0,1,1)Va∤AB103141\vec{a}=(-1,3,4)||V\\ A(1,0,2)\in L_1\\ B(1,-1,3)\in L_2\\ \vec{AB}=(1-1,-1-0,3-2)=(0,-1,1)|| V\\ \vec{a}\not|| \vec{AB}\\ \frac{-1}{0}\not=\frac{3}{-1}\not=\frac{4}{1}

b)

n=[a,AB]=ijk134011==i(3+4)j(10)+k(10)=(7,1,1)\vec{n}=[\vec{a},\vec{AB}]=\begin{vmatrix} \vec{i} & \vec{j}&\vec{k} \\ -1&3&4\\ 0&-1&1 \end{vmatrix}=\\ =\vec{i}(3+4)-\vec{j}(-1-0)+\vec{k}(1-0)=(7,1,1)

n\vec{n} is perpendicular to the plane VV

c)

n=(7,1,1)\vec{n}=(7,1,1) is perpendicular to the plane, A(1,0,2)VA(1,0,2)\in V

7(x1)+1(y0)+1(z2)=07x+y+z9=07(x-1)+1(y-0)+1(z-2)=0\\ 7x+y+z-9=0

d)

L3L_3 is perpendicular to the plane VV

n=(7,1,1)L3C(1,1,4)L3(x,y,z)=(1,1,4)+t(7,1,1),tR\vec{n}=(7,1,1)||L_3\\ C(1,-1,4)\in L_3\\ (x,y,z)=(1,-1,4)+t(7,1,1), t\in R


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS