A parallelepiped is defined by the following vectors |š| = (2, 3, ā1), |š| = (ā1, 0, 2),
and |š| = (3, ā1, 2). Find the volume of the parallelepiped.Ā
The volume is given by the formula "|a\\cdot |b\\times c||." We can write "b= -\\hat{i}+2\\hat{k}" and "c=3\\hat{i}-\\hat{j}+2\\hat{k}." "b\\times c=\\hat{i}(-2\\times -1)+\\hat{j}(2\\times 3-(-1)\\times 2)+\\hat{k}(-1\\times -1)" "=2\\hat{i}+8\\hat{j}+\\hat{k}." Hence "a\\cdot(b\\times c)=" "(2\\hat{i}+3\\hat{j}-\\hat{k})\\cdot (2\\hat{i}+8\\hat{j}+\\hat{k})" = "2\\times(2)+(3)\\times 8-(1\\times 1)=27." Hence volume ="|27|=27" in cube units.
Comments
Leave a comment