A. Given the following information about the hyperbola, find both its standard and general form:
1. FOCI: (-4, 0) (4, 0); VERTICES: (-3, 0) (3, 0)
2. FOCI: (-3, -3) (-3, 13); VERTICES: (-3, 0) (-3, 10)
B. Given the standard form of the equation of hyperbola, find the following, then sketch the graph:
A. orientation
B. opening of branches
C. center
D. transverse axis
E. conjugate axis
F. distance of the foci
G. vertices
H. foci
I. co-vertices
J. asymptotes
1.(x+4)^2/9 − (y+3)^2/4 = 1
2.(y+2)^2/36 − (x−1)^2/49 = 1
C. Convert each general form to standard form of the equation of hyperbola: (10 points)
1. 9y^2 − 4x^2 − 18y + 24x − 63 = 0
2. 9x^2 - 4y^2 - 90x + 32y - 163 = 0
A. 1. Basic “horizontal” hyperbola:
Equation: "\\dfrac{x^2}{a^2 }-\\dfrac{y^2 }{b^2 }=1"
"c^2=a^2+b^2"
Foci: "(-c, 0), (c, 0)"
Vertices: "(-a, 0), (a, 0)"
"a=3, c=4"
The standard form of an equation of a hyperbola
The general form of an equation of a hyperbola
2. The center is "(h, k)" and the vertices are "(h, k\\pm b)"
Equation: "\\dfrac{(y-k)^2}{b^2 }-\\dfrac{(x-h)^2 }{a^2 }=1"
Foci: "(h, k-c), (h, k+c)"
"h=-3, b=5, c=8, k=5"
The standard form of an equation of a hyperbola
The general form of an equation of a hyperbola
B.
1.
A. Horizontal oriented hyperbola
B. Opens left and right.
C. Center "(-4,-3)."
D. Major (transverse) axis length: 6
E. Minor (conjugate) axis length: 4
F. "c=\\sqrt{13}"
Focal Parameter: "\\dfrac{4\\sqrt{13}}{13}"
G. Vertices: "(-7, -3), (-1, -3)"
H. Foci: "(-4-\\sqrt{13}, -3), (-4+\\sqrt{13}, -3)"
I. Co-vertices: "(-4, -5), (-4, -1)"
J. Asymptotes:"y=-\\dfrac{2}{3}x-\\dfrac{17}{3}, y=\\dfrac{2}{3}x-\\dfrac{1}{3}"
2.
A. Verticaloriented hyperbola
B. Opens upward and downward.
C. Center "(1,-2)."
D. Major (transverse) axis length: 12
E. Minor (conjugate) axis length: 14
F. "c=\\sqrt{85}"
Focal Parameter: "\\dfrac{49\\sqrt{85}}{85}"
G. Vertices: "(1, -8), (1, 4)"
H. Foci: "(1,-2-\\sqrt{85}), (1,-2+\\sqrt{85})"
I. Co-vertices: "(-6, -2), (8, -2)"
J. Asymptotes:"y=-\\dfrac{6}{7}x-\\dfrac{8}{7}, y=\\dfrac{6}{7}x-\\dfrac{20}{7}"
C.
1.
"9(y^2-2y+1)-4(x^2-6x+9)=36"
"\\dfrac{(y-1)^2}{4}-\\dfrac{(x-3)^2}{9}=1"
2.
"9(x^2-10x+25)-4(y^2-8y+16)=324"
"\\dfrac{(x-5)^2}{36}-\\dfrac{(y-4)^2}{81}=1"
Comments
Leave a comment