Answer to Question #150264 in Analytic Geometry for Asfand Khan

Question #150264
The circle whose center is located in the first coordinate quarter touches the axis Ox at the point M, intersects two hyperbolas y=k1/x and y=k2/x (k1,k2 > 0) at the points A and B such that the line AB passes through the origin O. It is known that (4/k1) + (1/k2) = 20. Find the smallest possible length of the OM segment. In response, write down the square of the length of the segment OM.
1
Expert's answer
2020-12-20T18:04:30-0500

OM2=OAOB|OM|^2=|OA|\cdot|OB|

Points A(xA,yA)A(x_A,y_A) and B(xB,yB)B(x_B,y_B) are points of intersection circle with hyperbolas.

OM2=(xA2+yA2)(xB2+yB2)|OM|^2=\sqrt{(x_A^2+y_A^2)(x_B^2+y_B^2)}

OM2=(xA2+(k1/xA)2)(xB2+(k2/xB)2)|OM|^2=\sqrt{(x_A^2+(k_1/x_A)^2)(x_B^2+(k_2/x_B)^2)}

Since A and B lie on the same line, then: xA/yA=xB/yBx_A/y_A=x_B/y_B

xAyAxByB=k1k2    (xAxB)2=k1k2\frac{x_Ay_A}{x_By_B}=\frac{k_1}{k_2}\implies (\frac{x_A}{x_B})^2=\frac{k_1}{k_2}


OM2=(xA4+k12)(xB4+k22)xA2xB2=xA2xB2+2k1k2+k12k22/xA2xB2|OM|^2=\sqrt{\frac{(x_A^4+k_1^2)(x_B^4+k_2^2)}{x_A^2x_B^2}}=\sqrt{x_A^2x_B^2+2k_1k_2+k_1^2k_2^2/x_A^2x_B^2}

xB2=k2k1xA2x_B^2=\frac{k_2}{k_1}x_A^2

OM2==k2k1xA4+2k1k2+k13k2/xA4|OM|^2==\sqrt{\frac{k_2}{k_1}x_A^4+2k_1k_2+k_1^3k_2/x_A^4}

(4/k1)+(1/k2)=20(4/k1) + (1/k2) = 20

k2=k120k14k_2=\frac{k_1}{20k_1-4}

OM2==k1xA8+2xA4k13+k15xA4k1(20k14)|OM|^2==\sqrt{\frac{k_1x_A^8+2x_A^4k_1^3+k_1^5}{x_A^4k_1(20k_1-4)}}


OM2=1xA2xA8+2xA4k12+k1420k14|OM|^2=\frac{1}{x_A^2}\sqrt{\frac{x_A^8+2x_A^4k_1^2+k_1^4}{20k_1-4}}


Let: x=xA,k=k1,OM=y(x)x=x_A, k=k_1, |OM|=y(x)

Then:

y(x)=1x(x8+2x4k2+k420k4)1/4y(x)=\frac{1}{x}(\frac{x^8+2x^4k^2+k^4}{20k-4})^{1/4}

y(x)=14(x4+2k220k4+k4x4(20k4))3/4(4x320k44k4x5(20k4))=0y'(x)=\frac{1}{4}(\frac{x^4+2k^2}{20k-4}+\frac{k^4}{x^4(20k-4)})^{-3/4}\cdot(\frac{4x^3}{20k-4}-\frac{4k^4}{x^5(20k-4)})=0

4x84k4=04x^8-4k^4=0

x=kx=\sqrt{k}

xA=k1x_A=\sqrt{k_1}


OMmin2=1k1k14+2k14+k1420k14=k15k11|OM|_{min}^2=\frac{1}{k_1}\sqrt{\frac{k_1^4+2k_1^4+k_1^4}{20k_1-4}}=\frac{k_1}{\sqrt{5k_1-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment