"|OM|^2=|OA|\\cdot|OB|"
Points "A(x_A,y_A)" and "B(x_B,y_B)" are points of intersection circle with hyperbolas.
"|OM|^2=\\sqrt{(x_A^2+y_A^2)(x_B^2+y_B^2)}"
"|OM|^2=\\sqrt{(x_A^2+(k_1\/x_A)^2)(x_B^2+(k_2\/x_B)^2)}"
Since A and B lie on the same line, then: "x_A\/y_A=x_B\/y_B"
"\\frac{x_Ay_A}{x_By_B}=\\frac{k_1}{k_2}\\implies (\\frac{x_A}{x_B})^2=\\frac{k_1}{k_2}"
"|OM|^2=\\sqrt{\\frac{(x_A^4+k_1^2)(x_B^4+k_2^2)}{x_A^2x_B^2}}=\\sqrt{x_A^2x_B^2+2k_1k_2+k_1^2k_2^2\/x_A^2x_B^2}"
"x_B^2=\\frac{k_2}{k_1}x_A^2"
"|OM|^2==\\sqrt{\\frac{k_2}{k_1}x_A^4+2k_1k_2+k_1^3k_2\/x_A^4}"
"(4\/k1) + (1\/k2) = 20"
"k_2=\\frac{k_1}{20k_1-4}"
"|OM|^2==\\sqrt{\\frac{k_1x_A^8+2x_A^4k_1^3+k_1^5}{x_A^4k_1(20k_1-4)}}"
"|OM|^2=\\frac{1}{x_A^2}\\sqrt{\\frac{x_A^8+2x_A^4k_1^2+k_1^4}{20k_1-4}}"
Let: "x=x_A, k=k_1, |OM|=y(x)"
Then:
"y(x)=\\frac{1}{x}(\\frac{x^8+2x^4k^2+k^4}{20k-4})^{1\/4}"
"y'(x)=\\frac{1}{4}(\\frac{x^4+2k^2}{20k-4}+\\frac{k^4}{x^4(20k-4)})^{-3\/4}\\cdot(\\frac{4x^3}{20k-4}-\\frac{4k^4}{x^5(20k-4)})=0"
"4x^8-4k^4=0"
"x=\\sqrt{k}"
"x_A=\\sqrt{k_1}"
"|OM|_{min}^2=\\frac{1}{k_1}\\sqrt{\\frac{k_1^4+2k_1^4+k_1^4}{20k_1-4}}=\\frac{k_1}{\\sqrt{5k_1-1}}"
Comments
Leave a comment